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EXTENDED ABSTRACT 

Calibration and prediction in conceptual rainfall-
runoff (CRR) modelling is affected by input, 
model and response error (Figure 1a). This study 
works towards the goal of developing a robust 
framework for dealing with these sources of error 
and focuses on model error. The characterization 
of model error in CRR modelling has been 
thwarted by poor conceptualizations of error 
propagation (Figure 1b) and the convenient but 
indefensible treatment of CRR models as 
deterministic descriptions of catchment dynamics. 
It is argued that CRR fluxes are fundamentally 
stochastic because they involve spatial and 
temporal averaging. Acceptance that CRR models 
are intrinsically stochastic paves the way for a 
more rational characterization of model error. The 
hypothesis advanced in this paper is that CRR 
model error can be characterized by storm-
dependent random variation of one or more CRR 

model parameters that affect fluxes. A simple 
sensitivity analysis is developed to assist in 
identifying the parameters most likely to behave 
stochastically. A Bayesian hierarchical model is 
formulated to explicitly differentiate between 
input, response and model error – this provides a 
very general framework for calibration and 
prediction, as well as the testing of hypotheses 
regarding model structure and data uncertainty. A 
case study using daily data from the Abercrombie 
catchment (Australia) and employing a 6-
parameter CRR model demonstrates the 
considerable potential of this approach. Figure 2 
illustrates the excellent fit to the observed data. Of 
particular significance is the use of posterior 
diagnostics to test key assumptions about errors. 
The assumption that the storm-dependent 
parameters are log-normally distributed is only 
partially supported by the data, which suggests that 
the parameter hyperdistributions have thicker tails. 
Further research is aiming to refine this approach 
to characterizing model error.  
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 (a) True Conceptualisation (b) Current Conceptualisation 
Figure 1. Errror propagation in CRR models (sources of errors shaded grey) [Kavetski et al. (2002)]. 
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Figure 2. Plot of observed and simulated runoff for Abercrombie River with storm-dependent parameters  

(Nash-Sutclife statistic = 0.947) 
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1. INTRODUCTION 

Conceptual rainfall-runoff (CRR) models are used 
to simulate water balance dynamics at the 
catchment scale. Characterising the uncertainty in 
streamflow predicted by a CRR model has 
attracted the attention of hydrologists over many 
years. Yet in the recent reviews Kuczera and 
Franks (2002), Kavetski et al. (2002), Vrugt et al. 
(2005) note that a robust framework that accounts 
for all sources of error (input, model and response 
error) remains to be developed. This has a number 
of implications. The regionalization of CRR model 
parameters continues to be confounded by bias and 
unreliable assessment of parameter uncertainty. 
Furthermore, it remains difficult to discriminate 
between competing CRR model hypotheses. Poor 
model performance can “hide” behind the veil of 
ignorance about the sources of error. 

The focus of this study is a more rigorous 
characterisation of the uncertainty associated with 
CRR models. The study builds on the Bayesian 
total error analysis (BATEA) framework of 
Kavetski et al. (2002, 2005c,d). The main 
contribution is an explicit characterisation of 
model error. This is linked with models of input 
and response error to produce a rudimentary total 
error framework.  

The paper is organised as follows: Following a 
brief review of CRR modelling, the need for 
characterising model error is motivated by an 
example. It is argued that the notion of a 
deterministic CRR model is indefensible. To make 
the CRR model stochastic a simple approach is 
assumed where the parameters vary randomly from 
storm to storm. A Bayesian inference framework is 
developed where hypotheses for model, input and 
response error are explicitly assumed and tested. A 
case study explores the viability of this approach 
and highlights the role of diagnostic checks of key 
assumptions.  

2. TRADITIONAL VIEW OF CRR MODEL 
ERROR 

CRR models are characterized by:  

qt ← h(xt, η) (1) 

where qt is the true response vector, which is 
typically the observed streamflow at time t. The 
vector xt is the true input and contains observable 
point or spatially averaged quantities (typically 
rainfall and ET). The function h() is a probability 
density function (pdf) which represents the 
catchment response to forcing inputs. The true 
response qt is a random sample from the pdf h(). 

The vector η represents the conceptual parameters 
which determine the magnitudes of qt for a given 
external forcing xt.  These parameters are inferred 
by the process of calibration.  

All calibration methods make some assumption, 
either explicit or implicit, about how errors 
propagate through the CRR model. (see Kavetski 
et al. (2002) for an overview). Figure 1a 
summarizes the three distinct sources of error in 
CRR models. The catchment responds to forcing 
inputs such as rainfall and ET. The observation of 
forcing inputs, particularly rainfall, is subject to 
measurement error due to instrument inaccuracy 
and incomplete sampling of the spatial field. The 
streamflow is also subject to measurement error. 
Even with error-free forcing and response 
observations the CRR model would not be 
expected to reproduce exactly the true response - 
this is called model error. 

In stark contrast, Figure 1b presents the 
conceptualisation that underpins calibration 
methods that dominate practice. The defining 
features are (a) observed forcing tx%equals the true 
forcing xt (input error is assumed negligible) and 
(b) the model and response error are represented 
by a pseudo-additive random process, the simplest 
being the simple least squares (SLS) error model:  

tq~  = h(xt, η) + εt  (2) 

 where εt is a random independent, constant 
variance Gaussian error. 

3. SIGNIFICANCE OF MODEL ERROR 

The conceptualisation of error propagation shown 
in Figure 1b is known to be a crude approximation 
of reality. This is illustrated by calibrating the 
Sacramento model to daily runoff using daily 
rainfall for the 2770 km2 Abercrombie River at 
Abercrombie (412028) in New South Wales, 
Australia. Thirteen parameters were calibrated to 
two years of data using the SLS criterion with the 
runoff data was square-root transformed to account 
for the heteroscedasticity of the runoff errors.  

Figure 3 presents a scatter plot of observed and 
simulated daily runoff along with the 90% 
confidence and prediction limits. The confidence 
limits (based on linear approximation) only 
account for the uncertainty in the parameters, 
while the prediction limits account for parameter, 
model and response uncertainty. The Nash-
Sutcliffe (NS) statistic was 0.73. The striking 
feature is that most of the predictive uncertainty is 
dominated by model, response (and input) error. 
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Noting that the 90% prediction limit interval 
represents ±(60 to 80)% of the simulated runoff, it 
is highly unlikely this uncertainty is due to errors 
in estimating runoff – a well maintained gauging 
station is unlikely to have a coefficient of variation 
(CV) in errors exceeding 5 to 10%. This evidence 
suggests the bulk of the uncertainty is due to 
model and forcing error (which was ignored). 

Inspection of the observed and simulated time 
series revealed the model error is highly structured 
and completely at odds with the SLS assumption 
of independence. There are long runs of systematic 
over- and under-estimation, recessions are mis-
specified, peaks are spuriously simulated or 
completely missed. These qualitative features are 
well known to practitioners and researchers – it is 
generally recognised that model and input errors 
induce a complex uncertainty structure in the 
model parameters and predictions. 
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Figure 3. Scatter plot for Sacramento model 
calibrated to daily runoff from the Abercrombie 

river. 

4. STORM-BASED CHARACTERISATION 
OF MODEL ERROR  

CRR models focus on the dominant catchment 
dynamics and are deliberately constructed to be 
parsimonious to ease the burden of calibration. 
Therein lies a likely major source of model error, 
namely the ever-present simplification of 
catchment processes.  

CRR models typically route water through one or 
more conceptual storages. These one-dimensional 
stores represent two or three-dimensional features 
of the catchment and therefore the contents of 
conceptual stores are almost always spatially 
averaged. The observed forcing input is typically a 
spatial and temporal average of a random field. 
There are an infinite number of spatially 
distributed rainfall fields that yield the same 
catchment average rainfall. However, each rainfall 
field creates a spatially different hydrologic 
response. Models based on spatial and temporal 

averaging cannot replicate such behaviour. As a 
result, CRR fluxes based on spatial and temporal 
averaging will, almost always, be in error. Because 
the CRR model may have interconnected stores, an 
error in one flux can propagate through 
“downstream” stores and thus affect other fluxes.  
This induces a persistent error in the fluxes 
dependent on the downstream store.  

This suggests it is unreasonable to expect a CRR 
model to deterministically simulate catchment 
response even if the true forcing were known. 
Spatial and temporal averaging induces 
unavoidable errors in fluxes. We argue that the 
notion of a deterministic CRR model needs to be 
relaxed if a rational description of model error is to 
be developed. 

The central question, therefore, is how to relax the 
determinism that is currently embedded in the 
CRR paradigm. The approach taken is to allow 
some of the CRR parameters to be random 
variables over some characteristic time scales. This 
will induce stochastic variations in the fluxes. This 
notion of time-varying parameters is not new. The 
state-space formulation underlying the Kalman 
filter naturally allows for time variation in 
parameters – in the extended Kalman filter CRR 
parameters can be treated as state variables which 
can be randomly perturbed at every update step 
[see Bras and Rodriguez-Iturbe (1985) for an 
overview of hydrologic applications]. However, as 
Kavetski et al. (2002) observe, the extended 
Kalman filter approach is hampered by 
assumptions of linearity in the state equation and 
Gaussian errors.  

The critical question to address is the temporal 
variation of the random perturbations of the model 
fluxes. The persistence in the flux errors 
previously discussed indicates that some form of 
persistence in the flux random perturbation is 
required. The rainfall during a storm event 
represents the primary (and spatially the most 
heterogeneous) forcing of the catchment water 
balance. It is therefore reasonable to suggest as a 
working hypothesis that flux perturbations should 
persist over storm-event time scales. One logical 
way to introduce this persistence is to randomly 
perturb flux parameters at the beginning of each 
storm event – this is consistent with the idea of 
storm-dependent parameters explored by Kuczera 
(1990). Hence the CRR conceptual parameter 
vector is partitioned as η = (θ, ω), where ω is the 
vector of time-invariant (deterministic) parameters 
and θ is the vector of storm-dependent (stochastic) 
parameters.  
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5. AN EXAMPLE WITH STORM 
DEPENDANT PARAMETERS 

Our hypothesis is that a significant part of model 
error can be described by randomly sampling one 
or more parameters from a probability distribution 
at the start of each storm. This section uses an 
example to demonstrate the plausibility of this 
mechanism and introduces a useful tool for 
identifying the CRR parameters suitable for 
characterization as storm-dependent.  

Figure 4 illustrates a typical CRR model, a 
member of the saturated path modelling (SPM) 
family [Kavetski et al., 2003], hereafter referred to 
as logSPM. The logSPM has 7 parameters (Table 
1) and three stores operating at a daily time step. 
The seventh parameter, rMult, needs further 
comment. Kavetski et al. (2002, 2005c,d) use 
storm-dependent rainfall depth multipliers as an 
explicit (albeit approximate) representation of 
input uncertainty, which corresponds to the 
assumption that rainfall errors are multiplicative 
(i.e., raintrue=rainobs*rMult). The same approach is 
used in this paper to compensate for catchment 
rainfall error. 
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Figure 4. Schematic of the 7-parameter logSPM 
CRR model. 

The effects of storm-dependent parameter 
stochasticity were explored using a daily runoff 
time series Qo derived from the two-year daily 
rainfall record for Abercrombie River assuming all 
the logSPM parameters were deterministic with 
values given in Table 1 (obtained by fitting the 
logSPM model to the Abercrombie streamflow 
record with a NS statistic of 0.73). Given the same 
rainfall a new runoff time series Qi was generated 
with the ith logSPM parameter, θi selected as being 
stochastic with a log-normal distribution with 
expected value given by Table 1 and a given CV. 
A new value of θi is sampled at the beginning of 
each storm. The remaining parameters remain 
deterministic with values given by Table 1. The 
NS statistic, NS(i) is then evaluated treating Qo as 
the “observed” and Qi the “simulated” time series. 

Table 1. Summary of logSPM parameters. 

Parameter Description Expected 
value 

k Exponent controlling 
saturated area fraction 

0.02 

sF Shift parameter  
controlling saturated 

area fraction 

2300 

ssfMax Subsurface stormflow 
at full saturation 

0.62 
mm/day 

rgeMax Groundwater recharge 
rate at full saturation 

5.6 
mm/day 

kBF Groundwater 
discharge constant 

6.3x10-5 

kStream Stream discharge 
constant 

0.47 

rMult Observed storm depth 
rainfall multiplier 

1.21 

Figure 5. Sensitivity of Nash-Sutcliffe criterion to 
storm-dependent parameter variability. 

Figure 5 presents a plot of NS(i), i=1,..,8, for a 
range of CVs. The NS criterion is most sensitive to 
storm-dependent variation in the parameter k. This 
regulates the production of saturation overland and 
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subsurface stormflow. The second most sensitive 
parameter is the rainfall multiplier parameter 
rMult. This regulates the magnitude of the error in 
the rainfall, the primary forcing. The remaining 
parameters display limited, if any, sensitivity to 
storm-dependent variation strongly suggesting 
they are best treated as time-invariant.  

6. INCORPORATING MODEL 
UNCERTAINTY INTO BATEA 

The BATEA framework, proposed by Kavetski et 
al. (2002, 2005c,d) to deal with forcing or input 
uncertainty can be readily extended to 
accommodate model uncertainty, expressed in the 
form of storm-dependent parameters. This 
formulation leads to posing BATEA in terms of a 
Bayesian hierarchical model (Figure 6).  

The hydrologic time series is partitioned into n 
epochs {(ti, ti+1-1), i=1,..n} where ti is the time step 
index corresponding to the beginning of the ith 
epoch. Each epoch is characterized by a storm 
event at its beginning followed by a dry spell. At 
the beginning of each epoch the storm-dependent 
parameters for the input error and model error 
components are sampled from their 
hyperdistributions, p(φ |α), and p(θ|β) respectively. 
The parameters for the hierarchical BATEA are 
therefore the deterministic parameters, ω, the 
hyperparameters, β for the  storm-dependent model 
error component, the hyperparameters α for the 
storm-dependent input error component, and the 
parameters for the response error component, 
γ.  For a full description refer to Kuczera et al 
(2005). 
 INPUT ERROR 

α 

 
RESPONSE 
ERROR 

 
),|~(p~

streamflowObserved

i γqqq ←  γ 

i i i

True streamflow
h( , , )←q x θ ω  

        MODEL ERROR 

Storm-dependent CRR 
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i
~inputObserved x

φi  ← p(φ |α) 
i i i

True input
g( , )← φx x%  

 

Hierarchical process 

Parameter

Observed variable 

Legend ω 

β 

Figure 6. Hierarchical BATEA model. 

6.1. BATEA Inference Problem 

The objective of BATEA inference is to identify 
the parameters α, β, ω and γ given the streamflow 

{ , 1,.., }i i n= =Q q% %  and forcing { , 1,.., }i i n= =X x% %  
data. Following Kavetski et al. (2002), the most 
probable (modal) parameters are found by 
maximizing the posterior pdf:  

1: 1:p( , , , , , | , )n nα β ω γ θ φ Q X% %  (3) 

where 1: 1{ ,..., }n n=θ θ θ is the vector of CRR storm-
dependent parameter realizations for all the storms, 

1: 1{ ,..., }n n=φ φ φ .   

To expedite this inference problem the following 
simplifications are made: 1) The input error model 
is i i iφ=x x% for each storm epoch, with φi (denoted 
as rMult in Figure 4) being storm-dependent.  
2) The response error parameters γ  are assumed 
known. This is a reasonable assumption for 
streamflow from a well-maintained gauging station  

7. CASE STUDY  

The Abercrombie catchment is revisited to explore 
the hypothesis that storm-dependent parameters 
adequately describe rainfall input and model 
uncertainty. Storm epochs were defined by dry 
spells of 2 or more days with a 0.5mm rainfall 
threshold defining a wet day. In the two-year daily 
record, 71 storm epochs were identified. 

The distributional assumptions used in BATEA to 
characterise the input, model and response error 
are summarized in Table 2. Uniform non-
informative priors were specified for deterministic 
parameters ω, while weakly informative priors 
were prescribed for the hyper parameters β, since 
otherwise the posterior pdf becomes ill-posed 
(unbounded) (Kavetski et al., 2005c). The chosen 
streamflow response error model [N(0,0.252)]  was 
selected for convenience for this case study. The 
key point is that the response error model is 
inferred independently of BATEA, typically by 
analysis of rating curve residuals. This assists the 
inference because the focus is on input and model 
error rather than all three sources of uncertainty.  

Table 2. Distributions used in BATEA. 
Variable Probability 

Model 
Prior Distribution 

K 
2

k k

log k 
~ N(μ ,σ ) 

 
2

k
2 2 2

k

μ  ~ N(-3.88,0.5 )

σ ~Inv-χ (1,0.5 ) 
 

sF deterministic Uniform 
ssfMax deterministic Uniform 
rgeMax deterministic Uniform 

kBF deterministic Uniform 
kStream deterministic Uniform 

rMult 
2

r r

log rMult 
~ N(μ ,σ ) 

 
2

r
2 2 2

r

μ  ~ N(0,0.1 )

σ ~Inv-χ (1,0.2 ) 
 

Stream-
flow 

2q ~ N(q,0.25 ) %
 

- 
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The logSPM model was first calibrated using SLS, 
which yielded a NS statistic of 0.736 (same as the 
Sacramento model). Due to its high correlation 
with ssfMax and rgeMax, the parameter sF was 
fixed at its SLS value for BATEA inference – this 
avoids the confounding effects associated with 
strong parameter interaction (which are important 
in practice but lie beyond the scope of this paper). 
The natural logarithm of the parameters was 
calibrated to guarantee the positivity constraint and 
reduce the parameterization nonlinearity of the 
objective function surface. 

The posterior mode for parameters β, ω and 1:nθ  
was identified using a quasi-Newton optimization 
scheme (Kavetski et al, 2005a,b). Table 3 presents 
the posterior modal values and shows that the NS 
statistic climbs to 0.947 from 0.736 for the SLS. 
Figure 2 shows the fit is excellent with only small 
discrepancies at peaks and in recessions. 
Comparison of the SLS and BATEA parameters 
reveals a marked shift. This suggests a 
considerable bias can be induced by SLS 
calibration and is consistent with Kavetski et al. 
(2002) who conclusively demonstrate bias in a 
synthetic example with corrupt inputs and no 
model error. However, without assessing 
parameter uncertainty, the suspected bias in this 
case study cannot be confirmed. 

Table 3. Modal posterior parameter summary 
Posterior mode  

(NS=0.947) 
Parameter 

Mean SD 

SLS values 
(NS=0.736) 

loge k -2.1 0.075 -3.9 
loge sF 7.7 - .7 

logessfMax 4.5 - -0.56 
loge rgeMax 3.4 - 1.72 

loge kBF -8.9 - -10.2 
logekStream 0.97 - -0.767 
loge rMult -0.3 0.27 0.19 

7.1. Posterior Diagnostics 

Although the results are encouraging, it is 
necessary to test the assumptions underpinning the 
BATEA analysis using a variety of posterior 
diagnostics. The major assumption is that the 
storm-dependent parameters are independent and 
log-normally distributed. The normal probability 
plots (not shown) for log rMult and log k reveals 
that although the normal distribution is a 
reasonable approximation there are clear 
departures from normality in the tails. This 
suggests distributions more kurtotic then normal 
may be required to accommodate outliers. The 
time series plots (not shown) of the storm-
dependent parameters reveals that outliers tend to 

cluster. Although the runs test statistics do not 
reject the hypothesis that the storm-dependent 
parameters are independent there does appear to be 
second-order effects which suggest the definition 
of storm epochs may require further consideration. 

Another assumption that requires testing is that the 
residuals were independently and normally 
distributed with zero mean and a standard 
deviation of 0.25 mm. The normal probability plot 
(not shown) of the residuals reveals that while the 
sample mean and standard deviation are 0.001 and 
0.245 mm respectively, the distribution has tails 
considerably fatter than expected for a normal 
distribution – the generalization of the normal 
model described by Box and Tiao (1973) would be 
a logical extension. The autocorrelation of the 
residual time series was not significantly different 
from zero however the runs test strongly rejected 
the assumption of independence. Nonetheless, 
given the small magnitude of the residuals, this is 
viewed as a relatively minor issue. 

8. DISCUSSION 

The astute reader would be interested in how 
BATEA differs from the GLUE formalism of 
Beven and Binley (1992). GLUE exposed the 
shortcomings of traditional statistical models such 
as nonlinear regression and the Kalman state-space 
formulation that assume the errors are additive and 
Gaussian. However, these shortcomings are not 
deficiencies of the Bayesian paradigm itself, but 
are brought about by a failure to recognise that a 
robust CRR framework must not only describe 
hydrologic processes, but also error processes. 

GLUE and BATEA share in common the 
recognition that model error is significant and 
difficult to characterize. However, the conceptual 
frameworks are fundamentally different. While 
BATEA incorporates the error propagation 
framework shown in Figure 1a in which input, 
response and model error are differentiated, GLUE 
effectively treats all error as parameter uncertainty. 
GLUE remains rooted to the deterministic CRR 
model, whereas BATEA allows parameters to 
evolve stochastically from storm to storm. The 
exclusive focus on parameter uncertainty in GLUE 
creates conceptual difficulties in its derivation. For 
example, although GLUE uses Bayesian updating, 
its likelihood functions are not proper – indeed 
they are often termed “pseudo-likelihood 
functions” in recognition that subjective goodness-
of-fit criteria are used to assemble the likelihood 
function. In contrast BATEA directly represents 
input, response and model error (expressed as 
storm-dependent parameters) within the standard 
Bayesian framework. As a result, all assumptions 
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are explicit and open to challenge. Seen in this 
light, BATEA combines the philosophical basis of 
GLUE (which abandons the notion of single ‘true’ 
parameters) and improves on it by explicitly 
disaggregating input, model and response error 
using formal Bayesian strategies. 

9. CONCLUSIONS 

The characterization of model error in CRR 
modelling has been thwarted by the convenient but 
indefensible assumption that CRR models are 
deterministic descriptions of catchment dynamics. 
Explicit acceptance that CRR models are 
fundamentally stochastic paves the way for a more 
rational characterization of model error. In this 
study we argued that CRR fluxes are 
fundamentally stochastic because they involve 
spatial and temporal averaging. We proposed the 
hypothesis that CRR model error can be 
characterized by storm-dependent random 
variation of one or more CRR model parameters. 
A simple sensitivity analysis was developed to 
identify the parameters most likely to vary 
between storms. A Bayesian hierarchical model 
was developed to explicitly differentiate between 
input, response and model error in the form of 
storm-dependent parameters. The hypothesis that 
independent and log normally distributed storm-
dependent parameters can account for model and 
input error was evaluated in a case study. Posterior 
diagnostics showed this hypothesis was partially 
supported, though the need to deal with outliers 
was recognised.  

This study moves a step closer to a total error 
formalism which will enable rational assessment 
of predictive uncertainty and potentially remove 
some of the factors that confound regionalization 
of CRR parameters and enable more rigorous 
testing of competing CRR model hypotheses.  

Nonetheless, significant problems remain. The 
greatest challenge is the characterization of the 
inherent stochasticity in CRR models. In this 
study, an intuitive approach was adopted. Further 
research is needed to develop more rigorous 
stochastic formulations of CRR models. The 
computational issues of accommodating storm-
dependent parameters are also formidable. Further 
research is aiming to develop more efficient 
techniques to resolve these issues.  
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