
Proof of Concept of OpenMI for Visual DSS
Development

1Dirksen P.W., 1Blind M.W.,2Bomhof T.,2Srikrisnhudu Nagandla
1Institute for Inland Water Management and Waste Water Treatment RIZA, 2University of Dortmund /

Institute of Environmental Research

E-Mail: p.w.dirksen@riza.minvenw.nl

Keywords: HarmonIT; OpenMI; DSS development.

EXTENDED ABSTRACT

OpenMI (the Open Modelling Interface and
Environment) is an application interface developed
in the European project HarmonIT; it aims to
standardize and simplify linking of
(environmental/hydrological) models, databases,
monitoring devices and thus allow (run-time) data-
exchange, without additional programming effort.
The main product of HarmonIT is a blue print of
the standard interfaces. Software implementations,
both in Microsoft .Net and Java, have been
developed to proof its applicability. The
establishment of the OpenMI will support and
assist the strategic planning and integrated
catchment management required by the European
Water Framework Directive. However, OpenMI is
not only applicable for linking hydrological
models, but can be applied for development of
visual decision support systems as well.

This paper will demonstrate a use case in which
the OpenMI provides the communication between
the model components Mozart and Agricom, and
the AM-DSS-component (Agricom Mozart
Decision Support System). The latter is the
graphical user interface of the Agricom Mozart
Decision Support System, whereas the former
remain invisible to the non-specialist user. Mozart
is a groundwater model for the unsaturated zone,
which calculates water availability in different
meteorological situations. Agricom is used to
assess the agricultural and economic consequences
of water management scenarios. The AM-DSS is
developed as an OpenMI compliant linkable
component that takes care of initializing and
starting both Mozart and Agricom. The
communication between the AM-DSS, Mozart and
Agricom is based on the OpenMI application
interfaces. The AM-DSS can be executed as a
single application but can also be used as a
component in a larger linked modelling system.
Because AM-DSS is OpenMI compliant, OpenMI
compliant tools such as the DataMonitor and
EventViewer, can be used in a linked runtime
environment.

The AM-DSS enables the user to define a number
of scenarios in water management based on
changed input to Mozart and Agricom. In addition,
in Agricom the prices of different crops can be
altered. In Mozart it is possible to change the land
use, raise the riverbed level, change the drainage
resistance or enable/disable sprinkling. Further
measures can be included. For each scenario
information on the costs of the measures are
available.

AM-DSS runs the scenarios and compares the total
yield and the prevented economic losses (i.e.
economic benefits) of each scenario in relation to
the current situation (change nothing) taking into
consideration the costs of the measures. By that,
the cost-benefit ratios for each of the scenarios can
be estimated and an economically optimal water
management strategy, crop selection and irrigation
strategies at watershed level is possible.

 One of the key benefits of OpenMI compliant
models is that alternative models may easily be
incorporated in model chains (“swapping
models”). The AM-DSS however is a GUI/control
and not a model, and selected options may affect
both underlying model components. Though a
‘generic’ GUI is thus not feasible, the design and
implementation focuses on minimizing the effort
required if either underlying models are swapped
for others. Likewise the AM-DSS can be used as
part of a larger composition.

The driving forces for the development of AM-
DSS are (1) to prove that OpenMI is not limited to
linking models, but is also indispensable for DSS
development and control and (2) the perceived
need of agricultural DSS-systems to gain
flexibility to avoid extinction.

This paper will provide details of designs and
prove the usefulness of the OpenMI standard for
DSS-development.

184

1. INTRODUCTION

The Water Framework Directive calls for
integrated water management to be put into
practice and identifies whole catchment modelling
as a key part of integrated management. The only
realistic mechanism for whole catchment
modelling is integrated modelling in which models
of different processes are linked together and
hence allow process interactions to be simulated.
OpenMI (the Open Modelling Interface and
Environment; http://www.openmi.org/) is an
interface being developed in the European project
HarmonIT to standardize and simplify linking of
(environmental/hydrological) models, databases,
monitoring devices enabling OpenMI compliant
models to exchange data as they run. HarmonIT
(http://www.harmonit.org/) is a research project
funded by the European Commission aiming at the
development and implementation of a European
Open Modelling Interface and Environment
(OpenMI) that will simplify the linking of
hydrology related models (Tindall et al 2005).

The OpenMI environment comprises a set of
software tools (1: Sinding et al 2005, 2: Gijsbers et
al 2005)). They facilitate making new and existing
models OpenMI compliant. A graphical user
interface and further tools facilitate linking and
running models. A model system is OpenMI
compliant when it implements the OpenMI
Interfaces (Gijsbers 2005). The software delivered
by the HarmonIT project is merely a proof of
concept and one of the possible implementations
of the OpenMI interfaces.

Integrated catchment management requires
knowledge of all the processes and how these
processes interact. This knowledge is too
comprehensive to be possessed by any normal
individual. Managers can only take a well founded
decision when they are supported by a Decision
Support System (DSS) managing the individual
models of an integrated modelling system.

To date, DSS have tended to be used in addressing
single issue problems such as flooding or drought,
and several hard-wired, integrated systems have
been developed. Integrated catchment management
now requires a DSS to be able to represent
multiple processes and how these processes
interact. In other words, managers need a DSS
with a large variety of models addressing multiple
processes linked together and exchanging data on a
timestep basis. OpenMI is designed to be used to
link models in such a way, but is it also suited for
developing DSS systems? Part of the HarmonIT
project was to develop a very simple DSS based on

the OpenMI software and Interface definitions.
The Agricom Mozart DSS (AM-DSS) is the result
of this effort and merely proofs the OpenMI
concept rather than being intended as a real DSS.
Mozart is a groundwater model for the unsaturated
zone, which calculates water availability in
different meteorological situations. Agricom is
used to assess the agricultural and macro economic
consequences of water management changes. Both
Mozart and Agricom are OpenMI compliant model
systems.

2. OPENMI

The aim of the OpenMI is to provide a mechanism
by which physical and socioeconomic models can
be linked to each other, to other data sources and
to a variety of tools at runtime, hence enabling
process interactions to be better modelled. Specific
objectives are that the mechanism’s design should:

• Be applicable to new and existing models

• Impose as few restrictions as possible on
the modeller’s freedom

• Be applicable to most, if not all,
simulation techniques

• Require the minimum of change to the
program code of existing applications

• Keep the cost, skill and time required to
migrate an existing model to a minimum
so that these factors are not a deterrent to
the OpenMI’s use

• Be easy to use

• Not unreasonably degrade performance

Engine

Output data

Input data

User interfaceUser interface

Figure 1. Modules of a model system

To date, almost all OpenMI compliant components
are developed by wrapping legacy code (Fortran or
C) using the software delivered by the HarmonIT
project.

185

Most model systems have an architecture as shown
in Figure 1. After wrapping, such a model system
looks like Figure 2.

Engine

Output data

Input data

User interfaceUser interface

OpenMI

interfaces

Figure 2. Wrapped model system

The model engine is re-structured and the OpenMI
application interfaces are added.

Through the OpenMI application interfaces it is
possible to (1) exchange data (input and output)
and (2) control the component (initialize, compute
timestep, finalize,etc). Particularly the second
feature is essential when developing a DSS.

An OpenMI compliant component “tells” the
environment which quantities at which locations
can be delivered or accepted through the
interfaces. The way to communicate this is by
defining Input- and OutputExchangeItems; an
exchange-item is a combination of a quantity and
location, where the location can be one or more
points, lines, polygons, polylines or polyhedrons.
Linkable components can exchange data by a pull
mechanism, meaning that a (target) component
that requires input asks a source component for a
(set of) value(s) for a given ExchangeItem for a
given time. If required, the source component
calculates these values and returns them. This pull
mechanism has been encapsulated in one single
method, the GetValues() method. Dependent on
the status of the source component, this call may
require associated computation and even more
requests for data. An important feature is the
obligation that components always deal with
requests in order of receipt.

3. AM-DSS DESIGN

The main idea is to develop a controlling
application (AM-DSS) that is capable of running
Agricom and Mozart several times with adapted
input based on scenarios selected by the user.

Figure 3. Setup of AM-DSS

Figure 3 shows the setup of the three components
including the necessary input files.

The AM-DSS needs a graphical user interface
enabling the user to select different scenarios and
application dependent input. The AM-DSS
graphical user interface is presented in Figure 4.
As decision makers are not interested in models or
model systems, the graphical user interface hides
the components Mozart and Agricom, and offers
only scenario selection and input of predefined
quantities. The user interface has tabular input
screens for every individual component; this
facilitates possible future use of different model
systems with similar functionalities.

Figure 4. AM-DSS graphical user interface

The AM-DSS graphical user interface contains
four tabular-sheets; one for Agricom related input
(Figure 5), another one for Mozart related input
(Figure 6), a scenario selection sheet (Figure 7)
and a sheet with the output of the computations.

186

Figure 5. Agricom related input

Agricom uses different prices for different crops;
in this module these prices can be overruled.

Figure 6. Mozart related input

AM-DSS contains 4 scenarios for adapting the
input of Mozart. The Mozart input-files are very
complex, so changing this input manually is error
prone and needs extensive knowledge of Mozart.

For each scenario, experts have determined the
necessary adjustments to the input files, which will
be used to make the appropriate simulations.
Economic experts have assessed the costs for
implementation of these scenarios. Information
about the adapted input files and the costs are read
from an input file and AM-DSS implements the
scenarios by editing the appropriate input files.

Figure 7. Scenario selection

The OpenMI application interfaces are used for
running the scenarios and getting the results from
the model systems. Figure 8 illustrates this first
setup of AM-DSS.

Figure 8. First implementation of AM-DSS

The scenarios module is the starting point of the
model simulations. The user can select one or
more Mozart scenarios and he can select to use the
default crop prices or the prices adapted in the
Agricom module. When selecting a scenario, the
investment is altered based on the costs per
scenario given by the expert. When the user
presses the “Run” button, two computations are
carried out; a base case and a case with the
scenarios applied including the possibly adapted
crop prices. As a result the net economic benefit is
calculated based on the investment and the output
of the two simulations.

AM-DSS runs the scenarios and compares the total
yield and the prevented economic losses (i.e.
economic benefits) of each scenario in relation to
the base scenario (change nothing) taking into
consideration the costs of the measures. By that,
the cost-benefit ratios for each of the scenarios can
be estimated and an economically optimal water

Mozart Agricom

AM-DSS

Scenarios

GetValues

GetValues
GetValues

Edit Input-
filesEdit Input-

files

Control Control

187

management strategy, crop selection and irrigation
strategies at watershed level is possible. Results of
different scenario runs are summarized in the
output module. The user will get a good overview
of the net economic benefit when applying
different combinations of scenarios.

4. EXPERIENCES WITH AM-DSS

With this first OpenMI compliant DSS it is
possible to make some pre-defined scenario
computations and present the results to the user. At
the time of developing the AM-DSS the
components Agricom and Mozart were OpenMI
compliant, but supported only a limited number of
ExchangeItems.

The exercise proved that it is well possible to
develop a DSS using the OpenMI interfaces and
software. OpenMI has proven to be flexible and
adequate enough to use in DSS development. The
AM-DSS is designed to be a stand-alone
application which instantiates the components
Mozart and Agricom, generates the necessary links
and controls running Mozart and Agricom with
different sets of input. AM-DSS controls the
model systems, edits the input given the chosen
scenario and gathers information from the model
systems for assessment of scenario impact. The
AM-DSS is, on itself, a linkable component,
enabling linkage of AM-DSS to other OpenMI
linkable components.

 This way of using OpenMI is rather different from
the other use-cases of the HarmonIT project in
which models were wrapped to be OpenMI
compliant and computations were made using
these components linked manually to other
components through the OpenMI graphical user
interface and running computations through this
same user interface. In the case of AM-DSS,
OpenMI software was used to instantiate the
components, automatically generate the necessary
links and run the computation. This approach
underlines the fact that OpenMI is not a
framework, but enables components to directly
communicate with each other by means of the
OpenMI interfaces.

The OpenMI components Agricom and Mozart
were wrapped during the HarmonIT project even
partly parallel to the development of the AM-DSS.
At this moment Mozart and Agricom have a
limited number of ExchangeItems and this
prevents the development of a sophisticated DSS.

Mozart and Agricom are used by RIZA to make
policy analysis for the Netherlands. The
schematization of Mozart covers all hydrological

units of the Netherlands. In case of the AM-DSS
the schematization consists of only two
hydrological units.

5. POSSIBLE ENHANCEMENTS

The input changes to the models Mozart and
Agricom based on the scenarios chosen by the user
are now implemented as changes to the input files
of these components. This is not the way an
OpenMI compliant DSS should work, but this
method is used because Mozart and Agricom did
not yet support enough Input-ExchangeItems to
implement the input-changes through the OpenMI
GetValues calls. When sufficient ExchangeItems
are available, the AM-DSS software would be able
to change the input values of the models by
generating an OpenMI- link between the AM-DSS
component and the model components for every
model input quantity that is to be modified.

Eventually a relational database management
system containing all input data of all linkable
components might replace the input files now used
by these components. Implementing this database
system as an OpenMI linkable component enables
the model components to query their input through
the OpenMI GetValues method.

The setup of AM-DSS with different modules for
different model components allows a model
component to implement it’s own user interface.
One of the possible enhancements of the AM-DSS
application is by providing a handle from Agricom
to implement a user interface provided by Agricom
replacing the current input of crop prices.

Of course further enhancement of the DSS with
different model components or even an economic
optimisation tool is possible, but this goes beyond
the scope of the HarmonIT project. Proving the
applicability of OpenMI for DSS systems is the
main purpose of developing the AM-DSS

6. CONCLUSIONS

OpenMI has proven to be flexible and adequate
enough to use in DSS development. The use-case
also shows that being OpenMI compliant is not
enough to ensure full implementation of a
component in a DSS; the availability of Input- and
Output ExchangeItems determines the applicability
of components.

AM-DSS de facto contains the controller function
implemented in traditional DSS and modelling
frameworks. Due to OpenMI in general and the
GetValues concept in particular, much
bookkeeping is kept by underlying model

188

components. As a result, the controller function of
OpenMI based DSS will be much simpler,
especially when all I/O is accessible through the
interfaces.

Developing applications like AM-DSS is not a big
effort. The effort needed is even further reduced
when model applications provide all necessary
input and output exchangitems or even provide a
graphical user interface which can be incorporated
in the application to be developed.

7. ACKNOWLEDGEMENTS

The development of the AM-DSS and migration of
Mozart and Agricom to OpenMI compatible
components is financed by the European
HarmonIT project.

8. REFERENCES

Tindall I. (editor), Moore R., Gijsbers G., Fortune
D., Gregersen J. and Blind M. (2005), The
OpenMI Document Series Part A – Scope
(version 1.0).

Tindall I. (editor), Gijsbers G., Gregersen J.,
Westen S. Dirksen F., Gavardinas C. and
Blind M. (2005), The OpenMI Document
Series Part B – Guidelines to the OpenMI
(version 1.0).

Gijsbers G. (2005), The OpenMI Document Series
Part C – the org.OpenMI.Standard interface
specification (version 1.0).

Gijsbers G. and Westen S. (2005), The OpenMI
Document Series Part D –
org.OpenMI.Backbone technical
documentation (version 1.0).

Sinding P, Gregersen J., Gijsbers P, Brinkman R.
and Westen J. (2005), The OpenMI Document
Series Part F – org.OpenMI.Utilities technical
documentation (version 1.0).

Dirksen F and Terveer R. (2005), The OpenMI
Document Series Part H – Designs for
additional OpenMI Tools (version 1.0).

189

