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Abstract

The design of an object-oriented framework for the flexibie development of a computer simulation of a complete

pastoral dairy farm for research use is outlined. The prime aims of the model are to provide maximum flexibility in the
specification of farm configurations and management scenarios, and to facilitate utilisation of existing subsystem models,
typically written in a variety of languages and software environments, as extensively as possible. Reasons for using an object-
oriented approach, and for the cheice of VisualWorks Smalitzlk in particular, are discussed. The problem of handling the
unavoidable combination of continuous-time system properties and discrete events aspects of the real-world system within an
object-oriented design, and the solution implemented in this work, is described. The results of simulating a very simple pasture
harvesting scenario are presented to llustrate features of the approach,

1. INTRODUCTION

A pastoral dairy farm is a complex system with many
poorly-defined  relationships  between  components,
particularly the animal-pasture interaction during prazing.
The situation is further complicated by major dependencies
on uncontrollable variables such as climate which make
unambiguous field experiments virtually impossible to
perform.  As a consequence, there is a clear role for a
computational model with a sufficiently detailed level of
representation to allow simuiation experiments that provide
results unbiased by uncontrolled variables. This would
minimise the need for, and focus the direction of, costly
field tavestigations of differing stock management systems,
supplementary feeding regimes, etc,  The process of
developing such a model should alse belp identify and
direct rescarch towards critical areas of the farm system
which are poorly understood, and over a period of time the
model should evolve to become an effective repository of
the current level of understanding of the pastoral dairy farm
system in a practicaily useable form.

Liztle progress has been made to date in modelling the
whole dairy production process in a pastoral farm
environment (L.e. where the major feed wput is grazed
pasture). Although a valuable tool for advisers and farmers
is provided in the UDDER muodel of Larcombe [1989,
1994}, this does not aim o implement the level of detail or
flexibility needed for many research applications. Detailed
and well-verified subsystem models do however exist for
some components of the dairy production sysiem, in some
cases representing many years of cumulative development
(e.g. the MOLLY bovine mefabolism model of Baldwin
[19957), and clearly any farm system medel should make
use of such components wherever possible. In this paper we
describe a framework designed to allow the ongeing
development of such a whole-farm dynamic simulation
model for rescarch use. The model framework is explicitly
designed to facilitate incorporation of existing (and future)

1154

sub-mode! components, and to readily allow contributions
from third parties.

Z. DEVELOPMENT ENVIRONMENT

An object-oriented design of a framework to achieve the
above goals has been implemented in VisualWorks Smalltalk
[ParcPlace-Digitalk, 1995). This is a general purpose
application  framework and integrated development
environment based on a language which sixictly enforces
object-oriented (OQ) design principles. The rationale for this
approach and the background to some of the key design
decisions are discussed in this section.

2.3 Hatienale for Object Oriented Design

The principal aims of the OO methodolegy of seftware
development {e.g. see Meyer [1997], Booch [1994]) are to
increase reliability and reduce maintenance costs of large
complex systems, and to increase re-usability of software
components. These goals are achieved primarily through the
data-hiding encapsulation property of the abstract data type
objects which extend the concept of a simple data structure
by the inclusion of strictly local procedures or methods to
manipulate that data, An object’s methods are invoked by
messages sent by other objects (and also by itself), and in a
strict GO Janguage such as Smalitalk this is the anly way in
which the object’s internal state can be either accessed or
changed. This encapsulation property radicaily constrains
the potential for global accessibility and inappropriate data
manipulations that lie at the root of most reliability and
maintenance problems in complex procedural code.

High level 00 design therefore requires the identification of
a set of objects, and the specification of the public messaging
interface between them, which implements the desired
behaviours. In simulations of real-world systems such as a
farm, where the real-world components {cows, paddocks etc)



also implicitly encapsulate much of their functionality, it is
appropriate and advantageous to make a high degree of
correspondence between those components and the major
software objects. The same approach can then be applied
iteratively to represent more complex objects in terms of
interacting sub-component objects, although the close
association between real-world entities and software objects
may weaken as abstract functionality is identified and
implemented in object form. Once the responsibilities and
collaborations of the constituent objects have been specified
[Wirfs-Brock et al,, 1990] the overall model functicunality is
independent of the details of the internal representations of
thosc objects and their method implementations.  This
greatly facilitates development by different conlribwtors and
the incorporation of component ohjects from different
SOUFCES.

Clearly any  self-conmined  executable  program
(implementing a component sub-model such as cow
metabolism, for example) inherently has the same basic
encapsulation property as a software object {although thers
are some impaortant differences),  lis internal structure is
hidden, and it can be viewed as receiving messages from the
user (which typically consist of command-line and/or
keyboard entries}, and sending messages {contalning is
output data) to & file object or screen window object. Thus
legacy procedural-code components should, in principle, be
able to be incorporated in an OO model by providing some
form of interface to adapt their ‘messages’ to the protocol of
the host OO environment. The major OO0 languages do
provide just such a capability, and iss utilisation in practice
is discussed in detail elsewhere in this conference by Neil et
al. [1997].

There arc other important object properties such a$
inheritance and message polymorphism which confribute to
effective Te-use of components and to the clearer, simpler
(and hence more easily naintained and exiended) code that
characterises a good 00 implementation. See Booch {1894]
and Meyer [1997] for OO fundamentals; Krenzer [19806]
and Fishwick [1995] for application of GO techniques to
simulation models in general. Plant and Stone [1991),
Gauthier and Néel [1996], Acock and Reddy [1997],
Sequeira et al. [1997], and Lemmon and Chuk 11997}
discuss some interesting  agricultural and  biclogical
applications.

2.2 Chgice of VisualWorks Smalitalk

Smalliatk [Goldberg and Robson, 1989] is a prototypical OO
language with a rich and stable base class structure resulting
from over 20 years of development. Versions are available
from two major and several minor commercial vendors, and
differ mainiy i the extensions {in the form of additional
classes) provided to implement their powerful integrated
development enviromments, visual GUL design twools, ete.
Automatic sarbage collection lazgely relicves the developer
of responsibility for memory management, and incremental
compilation brings the advantages of an interpreted language
during development while impesing a minimal sun-time
pepalty. Both are standard Smalltalk environment features
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which greatly facilitate rapid prototyping. The pepalty of a
typical 8Mb image size is becoming less important with
current desktop machine specifications.

Of the various Smalltalk implementations VisualWorks (VW)
was chosen for this project, at least for the initial
development, on the basis that it was the most mature product
with extensive support via vendor and third pariy class library
extensions. It is also the subject of several excellent
independent texts. e.g. see Lewis [1995], Howard {1995}
VW has powerful cross-platform capabilities, and the strong
separations implicit in its Model-View-Controller partitioning
of application functionality should facilitate porting to another
Smalltalk, or even another OO language, if the need arises.

Other OO development environments were given serious
consideration. Those based on C++ were tejected on the
grounds of the language complexity and the onerous
programmer  responsibility for memory —management
Borland's Delphi was considered too great a risk because of
its proprietary language (only the Object Pascal version was
available at that time) and single source. Also, as these more
traditional languages require separate compile and link phases,
their development environments cannot support the ‘in-fine’
component testing and dynamic debugging that is such 2
valuable feature of Smalitalk. We note too that the supposed
execution speed advantages that their pre-compilation brings
are probably not as great in realistic benchmarks as is often
claimed. e.g. see Piraino [1996] and Buck [1997].

3. MODEL OVERVIEW

Our basic representation of the farm is a state-variable (sv)
description of a contineous-time dynamical systerm (e.g.
Padulo and Arbib [1974], Woodward [1997}).  State
variables %, are always associated with some storage
mechanism (of matter or energy}, and summarise the past
history of the systemn in the sense that their values at some
time 4, (along with knowledge of the system parameters)
provide all the information that is needed to calculate future
states {and outputs) on the basis of inputs u, at t > 1, The
hasic farm  model inputs are sunlight energy for
photosynthesis and water from rainfall, specified from time-
series meicoretogical data. Differential equations (DE’s),
provide the fundamental description of the time evolution of
the sv's. Fortunately most of the relevant processes can be
well approximated by rates of wansfer of matter and energy
hetween different ‘lumped element’ pools, thus ignoring
lacal spatial dependencies and giving the important reduction
to ordinary DE's involving only time derivatives:

/et = L%, g By

In this farm model, formmately, most of the derivative
functions £j(.) have a direct dependence on only & relatively
smialt subset of the sv's {a consegquence of the high degree of
comparimentalisation implicit in the biological objects).
Even so, these DE's are usually non-linear with time-
dependent parameters, and there are many of them. The only
practical method of solstion for anything but trivial cases is
numerical integration, and the procedures to implement this



must be implicit, and preferably transparent to the user, in
any simuiation model.

In addition there are at least two other requirements which
must be recognised.  Firstly, the farm configuration
{partitioning of total land ares into paddocks, specification
of plant and animal species, assignment of animals to
paddocks etc) is not constant. Discrete management evenis
(such as moving a mob of cows from one paddock te
another) changes the actual form of the update equations for
the sv’s of the components involved. Paddock cover sv’s,
for example, wilt need to be updated by DE’s describing the
grazing process when cows are put in that paddock, instead
of the DE’s describing normal pasture growth. Secondly,
we musi cater within the same framework for pseudo-
discrete events which cannot be described sensibly by DE’s
(e.g. machine cutting pasture for conserved feed such as hay
or silage}.

An outline of the major object relationships to satisfy these
requirements is presented in Figure 1. The notation is
designed to emphasise the “has-a” relationships as these
implicitly identify the messaging paths - an object must hold
a reference {direct or indirect) to any other object with
which it needs to communicate. It is seen that an object
may be referenced (or held by) more than one ather object,
and that two objects may reference each other.
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Figure 1: Relationships between the major objects of a
very basic farm. Instance variables (denoted by = ) hold
references to other objects to which it sends messages.

Note that Figure ! gives noe indication of the class
hierarchies [Booch, 1994} of the objects shown, However,
all except the svUpdaters are instances of immediate
subclasses of Model class (which is the base VW class for
all domain mode! objects). Fach sv of each dynamical
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component abject has its own svUpdater, the update
messaging  for  these  being implemented by
stateUpdateSequencer (see Section 3.2). The many different
syUpdaters {not distinguished in Figure 1) have considerable
cormmon functionality which is implemented in a 3-level
abstract class hierarchy rooted in Model.

The cowMob and paddockGroup objects contain collections
of animais or paddocks which will be treated as an entity,
e.g. dry cows, paddocks available for grazing. Smalitalk’s
collection classes have powerful methods to iterate
procedures over all members of z cellection, and to
manipulate  membership. These give a considerable
simplification {(and consequent increase in reliability) in the

represeniation of many tynical farm operations,

mEERRAR M

The climate object maintains a collection of datlyMetData
records and has methods to read these in from file, Other
objects (particularly the paddocks) can thus obtain real
historical data or useful aggregations (e.g. 10-year means} on
a daily basis.

Other objects implement the mechanics of the simulation
procedure, as now descrived.

3.1 Simulation Time Advance

All simulation clock and calendar information is maintained
in the dateAndTimeKeeper object. Having specified begin
and end times for the simulation, and the initial states of all
the objects, simulation time is advanced by computing sv
updates over successive simulation steps. These we define as
intervals of real time during which the farm configaration (as
defined above) remains unchanged. A simulation step will
usually be commenced with a configuration change, but this
is not a necessary requirement. Specification of the duration
of & simulation step, as well as the farm configuration for that
step, is the responsibility of the farmManager object (see
Section 3.3).  Execution of the complete simulation is
thereby effected by the following method (see Appendix for
brief syntax summary), which also gives some indication of
the ability to write self-documenting code in Smalltalk:

FarmModel>>runSimulation

istepl “Temporary variable”

[dateAndTimeKeeper atSimulationEnd} whileFalse:
[farmManager setNextConfiguration.
step = farmManager nextStepSiza.
stateUpdateSequencer advance: step.
dateAndTimeKeeper advance: step,
self updateloggingData]  “Herated block”

3.2 State Variable Updates

To implement the appropriate update procedures required in
different configurational states of the farm, most sv’s require
more than one svUpdater {(although only one is ever active
during a specific simulation step). The tequired svUpdater is
activated within the FarmManager>>setNextConfiguration
method by adding it to the dependents collection of the



stateUpdateSequencer (and at the same time removing the
previously active svUpdater). This makes use of VW’s
dependency mechanism  whereby  executnon  of a
‘Model>>broadceast: #aMessage’ method causes the same
#aMessage symbel to be sent to all of the objects in the
receiver’s dependents collection. Although this mechanism
18 peculiar to VW, it could readily be implemented in other
Smailtalic dialects (or other OO languages).

Each svUpdater belongs to one of three subclasses,
according to whether 1t implements a singleStep, integration
or external update procedure. The first two are
implemented entirely in Smalltaik., The extemal updaters
effectively provide an interface to external (usually legacy
code} procedures which will provide their own mntegration
routines.  Also, this external code will typically maintain
many more sv's than need to be accessed by the greater
model. These can therefore remain hidden.

The different svUpdater types receive a different sequence
of phase messages {from stateUpdateSequencer) which
maintain synchronism of the update procedure over the
simulationStep time interval. At the start of a new
simulationStep  each updater receives a wstartPhase
message. This causes it to make an internal copy of its
associated sv {and also copy the duration of the step, which
is passed as a message argument).  Similarly, the new sv
values are copied back by all updaters on receipt of an
#endPhase message. The singleStep updaters need only a
single intermediate phase message {(in response to which
they caleniate the new sv value). Integrator updaters, in
contrast, may require several miermediate phases, the exact
nember depending on the specified integration algorithm
they impiement (e.g. 2" or 4™ order Runge-Kutta). External
updaters need only inftiate therr external procedure,
awaiting its completion (if necessary) on their #endPhase.

In general the update algorithms will need o reference
values of sv’s of other objects, und this is done through
(read-only) accessor methods of those ebjects. [n this way
effective synchronism of updaters is achieved without any
constraints on the order in which they are added to their
dependency collections (and hence their position in the
broadeast sequence). The implementation of this
mechanism is further iHlustrated by the following method
code:

UpdaisSequencers»advance: siendize
singleStepUpdaters broadeast: #startPhase: with: stepSize.
integratorUpdaters broadcast: #sfartPhase: with: stepSize.
externalUpdaters broadeast: #startPhase: with: stepSize.
singleStepUpdaters broadcast: #phasel.
integratorUpdaters broadcast; #phaset.
externalUpdaters broadcast: #phased.
integratorUpdaters broadeast: #phase?.
integrator type == #BK4 ifTrus:
lintegratorUpdaters broadcast: #phasal,
integratorUpdaters broadeast: #phased].
singleSteptpdaters broadeast: #endPhase.
integratorUpdaters broadoast: #endPhase.
externallUpdaters hroadcast: #endPhase
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33 Implementation of Management Scenarios

A basic requirement of the model is for a flexible and
versatile specification and implementation of different farm
management scenarios. This is not a trivial problem, and the
degree to which it is satisfied will be a key determinant of the
model’s practical wiility. We have made these tasks the
responsibility of the farmManager object, despite the fact that
the existence of ‘manager’ or ‘controller” ohjects in OO
designs is often viewed as a warning of over-centralising
functionality (instead of distributing it amongst coliaborating
objects) — Steinman and Yates [1996]. However, we
consider such use appropriate in this case as the real-world
farm £ implicitly ‘managed’ at the top level by a human farm
mansger who makes decisions on the allocation of feed to
animals etc. with the aim of maximising production and
ufilisation of pasture.

At the beginning of each simulation step the farmManager
must  therefore  specify both the step configuration
(principally the assignment of cow robs to paddocks) and
duration, and then send messages to the appropriate objects
to achieve this. The approach being taken initizlly is to
provide well-identified and well-named methods in the
relevant classes so that the details of what is actually taking
place at the farm level are quite clear {0 a non-programmer
such 2s an agriculmural scientist. In effect we are attempting
to provide a high-level ‘farm management language’ in
which the setNextConfiguration method can be written by the
model user. This should allow 2 much more flexible means
of configuring the farm than use of conventional GUI tools
(check boxes, menus, list selections etc). The following code
fragment gives some idea of this:

FarmManager>>setdexiGonfiguration
i milkers nextPaddocklnRotatien ! “Temporary variables”

self moveStock:mitkers toGrazemnextPaddockinRotation.

The mob of milking cows and the paddock in which they are
to be grazed are first identified from the management
strategy {not shown). This will typically be achieved by
reference to some pre-determined scheme (e.g. sequential
rotation with changes at specific dates and times), application
of a set of decision rules or, more likely, a combmation of the
two. The new configuration is then established by invoking
the ‘high level’ moveStockifoGraze: method. This would be
implemented along the following lines:

FarmManager>>moveSlock:aMob toGraze:aPaddock
aMob paddock: aPaddosk.
aPaddock cowich: alob.
aMob setGrazeUpdate.
aPaddock setGrazeUpdate

The first two lines link the milkinghob and their new
paddock (as indicated in Figure 1). This cnables the
grazingPaddock to send messages to the mitkingMob {and
implicitly to all the individual cows in that mob) to obtain the
information it needs to update its state over the step interval,
and vice versa. The next two lines invoke the (polymorphic)



sefGrazelpdate method of both the cowMob and the
paddock. This has the effect of releasing all existing sv
updaters in these objects and assigning new ones to
implement the update procedures appropriate to a grazing

situation.  Similar code sequences may set new update
associations between other farm components. Note that
aithough the details of moveStocktoGraze: (and its

camponent methodsy may be quite complex, that complexity
is completely hidden at the level of the setNextConfiguration
method.

4. RESIILTS and DISCUSSION

The moedel is still in the sarly stages of development, so
only preliminary results and impressions are available.
Nevertheless, these provide support for the general validity
of the approach and the desired ability 1o utilise existing
sub-component models has been achieved.  This is
evidenced by two such legacy components having been
incorporated, a pasture growth model of McCall [1989] for
which we had access to the FORTRAN source code, and
Baldwin’s [1995] MOLLY cow model written in ACSL
code [Mitchell and Gauthier Associates, 19951, We note
however that moedern C++ environments do provide greater
capability in this regard — see Neil et al, {19971 for further
detail and discussicon.

in addition, a simple pasture updater based on a logistic
growth equation [Morley, 1908}, parameterised fron.
Brougham’s [1959] growth data, has been written as &
native Smalltalk obiect. The main purpose of this was to
verify the model’s internal integration rowtines, but it gives
a sufficiently reahistic representation to be useful in more
general testing. Selection of one or other pasture sub-model
requires a change to only one line in the FarmMode!>>build
method. A simple illustration of the current stage of

development is given in Figure 2.
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Figure 2: Monitor screen display of pasture cover and
silage accumulation over a sgason.

In this simulation a single paddock is being cut according 1o
a strategy which ammns to keep growth rates close to their
{time dependant) maxima. The resulting annual production
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of 23 tonne DM/Ha is weil in excess of the best values {15
1o 18 tonne) typically achieved in grazing regimes in the
same climate. However, the pattern of harvesting necessary
to realize this is incompatible with simple stock management,

To date we have nat felt any limitation to flexibility through
working in a general-purpose OO language rather than a
more specialist simulation environment such as DYMOLA
[Cellier, 19911, although unquestionably the time spent
building the updater structure and integration methods would
have been saved by taking that route. However, we excluded
that option on the basis of our reservations over committing
to such & specialised and proprietary environment,
particularly in the absence of any local experience or support.

Although we did not become aware of the work until well
mto our initial design, and despite the fact that its aim is
somewhat different, the basic philosophy and aspecis of the
implementation of the SAGE system of Gauthier and Néel
[1996] appear to have strong parallels with the present work.
The possibility of achieving some infegration with this
framework will be explored.

Performance is not yet an issue, but it will undoubtedly
become so as we move from the testing phase to simulations
of realistic farms with sipnificant numbers of complex sub-
model components.  However, we regard that as of
secondary importance at this stage of development given the
very considerable advantages of the interactive environment
that VisualWorks provides. In any case, desktop hardware
performance continues to increase and the 0O structure and
the tcchnigues used fo incorporate external components
facilitates running the model over multiple machines on a
network,

5. CONCLUSIONS

The underlying structure of an integrative framework for a
dynamic simulation model of a complete pastoral dairy farm
has been described. The ability to incorporate legacy (and
future) sub-mode! components in different programming
languages has been a major design criterion. The strongly
object-oriented Smalltalk langvage and the ViswalWorks
application framework have proved able to meet the design
requirements and provided an powerful rapid prototyping
and development environment. The OO0 design principles it
implicitly enforces appear natural and helpful in tackling this
patticular problem, and so far we have not felt any need for a
mere specific “simulation language’. The Smalltalk syntax
seems particularly suited to providing the basis of an
English-itke domain-specitic language that non-programmers
can use to specify complex farm configuration and
management SCenarios.
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7. APPENDIX - Smalltalk Syntax 141

Statements are executed from left fo right, and the basic
sequence is always:

an(0bject aMessage.

The result of sending aMessage to anObject is always
another object, so messages can be cascaded:

someNumber asRational printString.
- someNumber is.expressed as a rational, then printed.

The final returned object can be ignored, as in the two
examples above, or assigned to a variable:

time = systemClock now

- read this as “the variable timg gets the object which results
from sending the BOW message to the system{lock object™

ML‘SS'«lgES can Carry One or more argumems:
abictionary at: key put: value.

- the method name is at:pul: and it requires tweo arguments.



