Formulae for calculating the instantaneous rate of natural mortality of animals from its surrogates

Yongshun Xiao

CSIRO Division of Marine Research, GPO Box 1538, Hobart, Tasmania 7001, Australia.
Present address: South Australian Aquatic Sciences Centre, 2 Hamara Avenue, West Beach, SA 5024, Australia.
Email xiao.yongshun@pbi.sa.gov.au; Phone + 61 8 8200 2434; Fax + 61 8 8200 2481

Abstract Interspecific relationships between the instantaneous rate of natural mortality of fish in a natural population and its surrogates are useful for studies of their population dynamics. In this paper, I derive interspecific models for the instantaneous rate of natural mortality of animals in a natural population as a function of its age-, length- and mass-based surrogates, demonstrate their relationships with existing interspecific models, and fit them into data from three groups of animals. At equilibrium and for the most stable distribution of individuals of a population, the sum of the population's instantaneous rates of natural and fishing mortalities is in inverse proportion to the population's age-based surrogates (e.g., mean age, age at maturity and observed maximum age) and increases linearly with the rate of its individual's growth in length or mass.

1.1 Introduction
The instantaneous rate of natural mortality is a fundamental quantity of a natural population of animals and can be calculated from the number of deaths in the population over time. Unfortunately, in most cases, neither the time of death of an individual nor the number of deaths over time can be observed. Consequently, it can only be estimated from indirect information.

Many intraspecific and several interspecific models are available for this purpose. Interspecific models represent the instantaneous rate of natural mortality of an animal population as a function of its surrogates and provides a useful means for its calculation, especially in the absence of detailed intraspecific data (Olhumi 1979; Gunderson 1980; Poulter 1981; Hoening 1983; Gunderson and Dygert 1988; Jensen 1996; Brey and Gage, 1997). In this paper, I derive a new set of interspecific models, demonstrate their relationships with existing ones, and fit them into data from three groups of animals.

1.2 Model for \(F(a,t) + M(a,t) \)
Let \(N(a,t) \geq 0, 0 \leq a \leq a^* < \infty, 0 \leq t \leq t^* < \infty \), denote the number of animals of age \(a \) at time \(t \) in a natural population, with an average age at birth \(a^* \) and reference time \(t^* \). The change in \(N(a,t) \) in a time interval of length \(\Delta t \) is assumed to be proportional to \(N(a,t) \), such that
\[
\lim_{\Delta t \to 0} \frac{N(a+\Delta a,t+\Delta t) - N(a,t)}{\Delta t} = -[F(a,t) + M(a,t)]N(a,t)
\]
where \(F(a,t) \geq 0 \) and \(M(a,t) \geq 0 \) are, respectively, the instantaneous rate of fishing and natural mortalities of animals of age \(a \) at time \(t \). The instantaneous rate of fishing mortality \(F(a,t) \) is included here to cater for human exploited populations; \(F(a,t) = 0 \) for unexploited populations. Finally, notice that although \(\Delta a = \Delta t \) or \(\frac{\Delta a}{\Delta t} = 1 \) for many fisheries applications, \(\Delta a \neq \Delta t \) or \(\frac{\Delta a}{\Delta t} \neq 1 \), as when fish age is measured in years and time \(t \) in months. Expansion of \(N(a+\Delta a,t+\Delta t) \) in the neighbourhood of \((a,t) \) as
\[
N(a+\Delta a,t+\Delta t) = N(a,t) + \frac{\partial N(a,t)}{\partial a} \Delta a + \frac{\partial N(a,t)}{\partial t} \Delta t + O(\Delta a^2)
\]
and passing to the limit \(\Delta t \to 0 \) give
\[
\lim_{\Delta t \to 0} \frac{N(a+\Delta a,t+\Delta t) - N(a,t)}{\Delta t} = \frac{\partial N(a,t)}{\partial a} \Delta a + \frac{\partial N(a,t)}{\partial t} \Delta t - [F(a,t) + M(a,t)]N(a,t),
\]
which leads to
\[
(1) \quad \frac{\partial N(a,t)}{\partial a} \frac{da}{dt} + \frac{\partial N(a,t)}{\partial t} = -[F(a,t) + M(a,t)]N(a,t)
\]
from which
\[
(2) \quad F(a,t) + M(a,t) = \frac{1}{N(a,t)} \left[\frac{\partial N(a,t)}{\partial a} \frac{da}{dt} + \frac{\partial N(a,t)}{\partial t} \right]
\]
It can be proved (Appendix 1) that, at temporal equilibrium, under the assumption of the most stable age distribution and if \(\frac{da}{dt} = 1 \), equation 2 becomes
\[
(3) \quad F(a,t) + M(a,t) = \frac{1}{N(a,t)} \frac{\partial N(a,t)}{\partial a} = \frac{1}{\lambda} \frac{1}{\mu}
\]
where \(\lambda = \lambda(t) \), re-defined from \(\lambda(t) \) in Appendix A, and \(\mu = \mu(t) \) are, respectively, the "equilibrial" age and mean age of an equilibrium population. These assumptions are not as restrictive as they seem. For practical purposes, they are made implicitly in almost all measurements of \(M(a,t) \), many other types of data, and many biological models.

Now, both \(\lambda \) and \(\mu \) can be expressed in easily measurable quantities of an animal individual, including its age, length and mass. To do so, let an arbitrary measurable quantity \(S(a) \) be given, as a function of age \(a \), by
\[
(4) \quad S(a) = g(a)
\]
\[
(5) \quad a = g^{-1}(S(a))
\]
where \(g^{-1}(S(a)) \) is the inverse function (assumed to exist) of \(g(a) \). Substitution of equation 5 for \(a = \lambda \) into equation 3 yields the general model for calculating the value of \(F(a,t) + M(a,t) \) from values of its surrogates
\[
(6) \quad F(a,t) + M(a,t) = \frac{1}{g^{-1}(S(\lambda))} \frac{1}{g^{-1}(S(\mu))}
\]
from which age-, length- and mass-based models result trivially.

1.3 Age-based models
An age-based quantity \(T \) (e.g., age at maturity, longevity or observed maximum age) of a population of animals can be assumed, to the first approximation, to be in direct
proportion to its "equilibrium" age λ, or mean age μ of its
equilibrium population.

\[S(\lambda) = T \approx \lambda, \quad \text{or} \]

\[S(L) = T = aT^\alpha \]

with proportionality constant α. Substitution of equation
7 into equation 3 yields

\[F(a, t) = M(a, t) = \alpha T \]

where α is the parameter to be estimated. In using an
age-based model, it is important to choose an age-based
quantity, such that α is constant across all species of
interest.

Notice that equation 8 is equivalent in form to Ohsumi's
(1979, p.401, Lines 10-19) $(T = T, F(a), t = 0, M(a, t) = M$
and $\alpha = \log(a))$, to Hoening's (1983) equation 2
($\alpha = -\log(k)), Z = F(a, t) + M(a, t) + T = \lambda$), and to
Jensen's (1996) equation 7 ($F(a, t) = 0, \alpha = 1.65$ and
$T = \lambda_a$). Their equations were, however, obtained on
different grounds. Ohsumi (1979) defined the longevity of a
population as the age to which only one individual is
observed to survive. This definition gives an underestimate of longevity, for that individual may well live for some time after observation. Similarly, Hoening (1983) defined it as the age to which an arbitrarily small proportion of a stock survive. Such arbitrariness seems to have left something to be desired. Finally, Jensen's (1996) equation 5 and its resulting equations assume that fish of a stock mature when their fecundity function $f(a)$ at age a takes its maximum value. Alternatively, one can maximize their reproductive output in their life history

\[\int f(a)da \]

yield an average age at maturity $a_a = a_0$.

Thus, animals should mature as early as possible to
maximize their reproductive output in their lives.

1.4 Length-based models

To relate the "equilibrium" age λ and mean age μ of an
equilibrium population to a length-based quantity, consider
the length of its individuals at age $a L(a)$. Specifically, I
will now consider the most commonly used von
Bertalanffy, logistic and Gompertz growth equations, which,
in a differential equation, are given respectively by

\[L = K(L - L_w) \quad 0 < K, \quad 0 < \leq L < \leq KL_w \]

\[L = KL(1 - L/L_w) \quad 0 < K, \quad 0 < L < L_w \quad 0 < \leq L < \leq \frac{1}{2} KL_w \]

\[L = K L \log_2(L/L_w) \quad 0 < K, \quad 0 < L < L_w \quad 0 < \leq L < \leq \frac{1}{e} KL_w \]

with von Bertalanffy, logistic or Gompertz parameters
(K, L_w). Note that K and L_w have exactly the same
meaning in those equations: K is the growth rate of an
individual animal; L_w is its asymptotic size. Solution of these
equations, each as an initial value problem with
$L(a) = L_0 = L(a_0), yields, respectively (Xiao 1996),

\[L(a) = L_0 - L_0 - L_0 \]

\[L(a) = \frac{L_0 L_0 - L_0 L_0}{L_0 L_0 + L_0 L_0} \]

\[L(a) = L_0 [L_0 L_0 + L_0 L_0]^{-\frac{1}{2}} \]

It should be stressed here that $L(a_0)$ is defined as the
length of an individual at age a_0, a_0 can be any age of that
individual right from its genesis to its death, and $L(a_0)$ its
corresponding length. These equations can be rewritten as

\[a = a_0 - 1 - \log\left(\frac{L_a - L(a)}{L_a - L(a)} \right) \]

\[a = a_0 - 1 - \log\left(\frac{L(a) L_a - L(a)}{L(a) L_a - L(a)} \right) \]

\[a = a_0 - 1 - \log\left(\frac{L(a) L_a - L(a)}{L(a) L_a - L(a)} \right) \]

Substitution of equations 9.1-9.3 for $a = \lambda$ into equation 3 yields,

\[F(a, t) + M(a, t) = K \]

\[F(a, t) + M(a, t) = K \]

\[F(a, t) + M(a, t) = K \]

All growth parameters and variables are now in equations
10.1-10.3. But what is to be estimated from the
(multispecific) data? A parameter must be invariant, at
least approximately, across all species of interest. Both
K_l and a_0 vary across all species and hence are not
appropriate parameters. However, the logarithms of the
relative quantities and K_a in these equations vary much
less in extent across all species, or a group of species.

They are therefore assumed, to the first approximation, to be
a composite parameter, in which case equations
10.1-10.3 all become

\[F(a, t) + M(a, t) = K \]

but with parameter

\[\beta = K_a \cdot - \log\left(\frac{L_a - L(a)}{L_a - L(a)} \right) \]

\[\beta = K_a \cdot - \log\left(\frac{L(a) L_a - L(a)}{L(a) L_a - L(a)} \right) \]

\[\beta = K_a \cdot - \log\left(\frac{L(a) L_a - L(a)}{L(a) L_a - L(a)} \right) \]

In using one of the length-based models, one needs to
choose a length-based quantity $L(a)$, a reference length
$L(a_0)$, and a reference age a_0, such that β is constant
across all species concerned. Clearly, equation 11 has the
same functional form as Jensen's (1996) equation 8, which
was, however, derived under a restrictive assumption (see above).

1.5 Mass-based models through length

To relate the "equilibrium" age λ and mean age μ of an
equilibrium animal population to a mass-based quantity
through a length-based quantity, one only needs to replace
$L(a)$ in equation 11 with its associated
mass-based quantity. For example, let the general
allometric equation

\[S(a) = c^\alpha + a L(a) \]

\[L(a) = \frac{d(a) - c}{\alpha} \]

represent the relationship between the mass of an animal
$S(a)$ and its length $L(a)$ at age a, with allometric
parameters $a>0$, $b>0$ and $c \leq 0$. Substitution of equation 13 for $a = \lambda$ into equation 11 yields

(14) \[F(a, t) + M(a, t) = K/\gamma \]

with parameter

\[\gamma = K_0 - \log \left(\frac{L_{\infty} - L(a_0)}{L_{\infty} - L(a_0)} \right) \]

\[= K_0 - \log \left(\frac{L(a_0)}{L(a_0)} \right) \]

Similarly, models alternative to Gunderson's (1980) and Gunderson and Dyer's (1988) models can be readily derived for predicting the instantaneous rate of natural mortality of animals from their gonadosomatic index, because their gonadosomatic index is a function of their length.

1.6 Data and analysis

Use of equation 8 to estimate α requires data on $F(a, t)$, $M(a, t)$ and T; use of equation 11 to estimate β requires data on $F(a, t)$, $M(a, t)$ and K. However, estimates of $F(a, t)$ are usually not very reliable; $M(a, t)$ is usually substantially overestimated. The problem with $F(a, t)$ can be eliminated or reduced by using data from unexploited or lightly exploited populations. Unfortunately, almost all estimates of $M(a, t)$ come from heavily fished populations.

Three sets of data from three groups of animals are analyzed. Since reliable estimates of $F(a, t)$ are not readily available, in this analysis, they are either assumed to be zero or estimated as a parameter common to all species concerned. Thus, fitting of equation 8 to Ohsumi's (1979) data on the instantaneous rate of natural mortality $M(a, t)$ of cetaceans as a function of their fishing mortality $F(a, t)$ and observed maximum age T, under the assumption that the errors in $M(a, t)$ are independent, identical normal variates, yields

\[\hat{F}(a, t) = 0.0062 \pm 0.0065 \text{ yr}^{-1}, \ t_{0.025} = 5.944 \ (t_{0.025} = 5.349), \]

\[F_{1,17} = 611.27, P = 0.0001, r^2 = 0.9863, n = 19. \]

The relatively high estimate of the standard error of $\hat{F}(a, t)$ indicates that, for this set of data, $F(a, t)$ can be set to zero. Again, fitting of equation 11 to these data on the instantaneous rate of mortality $M(a, t)$ of fish as a function of growth rate K, under the assumptions that $F(a, t) = 0$ and the errors in $M(a, t)$ are independent, identical normal variates, yields $F_{1,9} = 4.7725 \ (t_{0.025} = 4.7725)$, $P = 0.0001, r^2 = 0.9855, n = 19$. Notice that, in both analyses, the observed maximum age of a cetacean population is about five times as high as the mean age of all individuals in the population.

Fitting of equation 11 to Gunderson and Dyer's (1988) data on the instantaneous rate of mortality $M(a, t)$ of fish as a function of their fishing mortality $F(a, t)$ and growth rate K, under the assumption that the errors in $M(a, t)$ are independent, identical normal variates, yields $\hat{F}(a, t) = 0.0632 \pm 0.1246 \text{ yr}^{-1}, \ t_{0.025} = 1.0632 \pm 0.4453$, $F_{1,10} = 5.700, P = 0.0281, r^2 = 0.2405, n = 20$. Again, the relatively high estimate of the standard error of $\hat{F}(a, t)$ indicates that, for this set of data, $F(a, t)$ can be set to zero. Again, fitting of equation 11 to these data on the instantaneous rate of mortality $M(a, t)$ of fish as a function of growth rate K, under the assumptions that $F(a, t) = 0$ and the errors in $M(a, t)$ are independent, identical normal variates, yields $F_{1,10} = 4.2842, P = 0.0001, r^2 = 0.6927, n = 20$.

Fitting of equation 11 to Brey and Gage's (1997) data on the instantaneous rate of mortality $M(a, t)$ of fish as a function of their fishing mortality $F(a, t)$ and growth rate K, under the assumption that the errors in $M(a, t)$ are independent, identical normal variates, yields $\hat{F}(a, t) = 0.1077 \pm 0.1251 \text{ yr}^{-1}, \ t_{0.025} = 2.5709 \ (t_{0.025} = 2.1629)$, $F_{1,10} = 249.2049, P = 0.0001, r^2 = 0.7570, n = 82$. Similarly, fitting of equation 11 to these data on the instantaneous rate of mortality $M(a, t)$ of fish as a function of growth rate K, under the assumptions that $F(a, t) = 0$ and the errors in $M(a, t)$ are independent, identical normal variates, yields $F_{1,10} = 2.1825 \pm 0.1262, F_{1,10} = 386.6960, P = 0.0001, r^2 = 0.8268, n = 82$.

1.7 Discussion

This work demonstrates that the instantaneous rate of natural mortality of animals in a natural population can be derived as a function of one or more of its surrogates, thereby providing age-, length- and mass-based models, or models based on other biologically meaningful quantities for its estimation. Although intended mainly for fishery applications, these models also apply to a great variety of animals.

The instantaneous rate of natural mortality of an animal population is one of the most difficult and elusive quantities to estimate. In fact, estimates are often substantially positively biased. Like previous models, those developed above require that uncertainties in $F(a, t) + M(a, t)$ be negligible to avoid propagation to parameters.

Finally, some age-based models may be better than length- or mass-based ones, because certain age-based quantities are more reliably measured. Also, the growth rates of length- or mass-based quantities may have different interpretations and hence can be as elusive as $M(a, t)$ itself. That is probably why equation 11 was not fitted to Gunderson and Dyer's (1988) data and Brey and Gage's (1997) data very well.

1.8 Acknowledgments

I wish to thank Prof Hugh Possingham (University of Adelaide), Dr Keith Hayes (CSIRO Division of Marine Research) and an anonymous referee (University of Adelaide) for commenting on the manuscript.

1.9 References

Appendix A Derivation of equation 3

At temporal equilibrium, i.e., \(\frac{\partial N(a,t)}{\partial a} = 0 \), equation 2 becomes

\[
F(a,t) + H(a,t) = \frac{1}{N(a,t)} \frac{\partial N(a,t)}{\partial a} \frac{da}{dt}.
\]

There are an infinite number of ways for allocating a total of \(N(t) \) individuals at time \(t \) of a population at temporal equilibrium over the (continuous) age interval \([a, \beta]\).

How can then \(N(a,t) \) be determined uniquely as a function of age \(a \)? The most probable distribution of this infinitum must be the most stable in the absence of large environmental disturbances. This assumption is valid for many species of large sizes, at least approximately and in the short-term. Under this assumption, \(N(a,t) \) as a function of age \(a \) at time \(t \) can be found, as a simple variation problem, by maximizing the entropy of the distribution function

\[
\text{(A1)} \quad \int_a^\beta p(a,t) \log(p(a,t)) da\]

under the constraints that

\[
1 = \int_a^\beta p(a,t) da \quad \text{and} \quad \mu(t) = \int_a^\beta a p(a,t) da.
\]

where \(p(a,t) = N(a,t)N(t) \). These constraints are, of course, justified mathematically (Evans 1978). To solve this variation problem, let

\[
H = -p(a,t) \log(p(a,t)) + \lambda(t)p(a,t) - \frac{1}{\lambda(t)} \alpha p(a,t)
\]

where \(\lambda(t) \) is the Lagrange multipliers to be determined from the constraints. Now, differentiating \(H \) with respect to \(p(a,t) \) and letting

\[
\frac{\partial H}{\partial p(a,t)} = -[\log(p(a,t)) + 1] + \lambda(t) - \frac{\alpha}{\lambda(t)} = 0
\]

(A3) \(p(a,t) = e^{\lambda(t)-1-\alpha \mu(t)} \).

Equation A3 does correspond to the maximum entropy or maximum value of equation A2 of \(\mu(t) \). Substituting equation A3 into the constraint 1 \(\int_a^\beta p(a,t) da = 1 \) gives

\[
\frac{1}{\lambda(t)} \int_a^\beta p(a,t) da = \int_a^\beta e^{\lambda(t)-1-\alpha \mu(t)} = \lambda(t) e^{\lambda(t)-1-\alpha \mu(t)} [1 - e^{-\beta - \alpha \mu(t)}]
\]

from which

\[
\lambda(t) = \left[\frac{1}{\lambda(t)} \int_a^\beta e^{\lambda(t)-1-\alpha \mu(t)} \right] e^{-\alpha \mu(t)}.
\]

Applying the constraint \(\mu(t) = 1/\alpha \int_a^\beta p(a,t) da \) on equation A4 gives

\[
\mu(t) = \frac{1}{\lambda(t)} \int_a^\beta p(a,t) da = \frac{1}{\lambda(t)} \int_a^\beta e^{\lambda(t)-1-\alpha \mu(t)} [1 - e^{-\beta - \alpha \mu(t)}] \quad \alpha \leq a \leq \beta
\]

from which

\[
\mu(t) = \frac{\alpha + \lambda(t) - (\beta + \lambda(t)) e^{-\beta - \alpha \mu(t)}}{1 - e^{-\beta - \alpha \mu(t)}}.
\]

Since \(p(a,t) = N(a,t)/N(t) \),

\[
\text{(A6)} \quad N(a,t) = \frac{N(t)e^{\lambda(t) - (\beta + \lambda(t)) e^{-\beta - \alpha \mu(t)}}}{\lambda(t) - \alpha}.
\]

\[
\mu(t) = \frac{\alpha + \lambda(t) - (\beta + \lambda(t)) e^{-\beta - \alpha \mu(t)}}{1 - e^{-\beta - \alpha \mu(t)}}.
\]

Differentiating \(N(a,t) \) with respect to \(a \) yields

\[
\frac{\partial N(a,t)}{\partial a} = \frac{1 - N(t)(\beta + \lambda(t) - \mu(t)) e^{-\beta - \alpha \mu(t)}}{\lambda(t)(\beta - \alpha)} - e^{-\beta - \alpha \mu(t)} = -\frac{1}{\lambda(t)} N(a,t)
\]

for \(\alpha \leq a \leq \beta \) with

\[
\text{(A8)} \quad \frac{1}{N(a,t)} \frac{\partial N(a,t)}{\partial a} = \frac{\partial \mu(t)}{\lambda(t)}.
\]

Now, let us see what \(\lambda(t) \) means from

\[
\mu(t) = \frac{\alpha + \lambda(t) - (\beta + \lambda(t)) e^{-\beta - \alpha \mu(t)}}{1 - e^{-\beta - \alpha \mu(t)}} \quad \text{if} \quad \beta \to \infty, \lambda(t) = \mu(t) - \alpha \quad \text{if} \beta \to \infty \quad \alpha = 0, \lambda(t) = \mu(t) \quad \text{if} \beta \to \infty \quad \text{and} \quad \alpha = 0, \lambda(t) = \mu(t).
\]

\[
\text{(A9)} \quad \frac{1}{N(a,t)} \frac{\partial N(a,t)}{\partial a} = \frac{\partial \mu(t)}{\lambda(t)} \quad \frac{\partial \mu(t)}{\lambda(t)} = \frac{\partial \mu(t)}{\lambda(t)} = \frac{1}{\lambda(t)}.
\]

If \(\lambda(t) = 1 \), i.e., an individual’s age changes at the same rate as time, equation A9 becomes

\[
\text{(A10)} \quad \frac{1}{N(a,t)} \frac{\partial N(a,t)}{\partial a} = \frac{\partial \mu(t)}{\lambda(t)} = \frac{1}{\lambda(t)} = \frac{1}{\mu(t)}.
\]