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Abstract

In this paper we review some recent developments in stochastic interest

rate models in the economics, finance and actuarial literature. We survey the empirical
evidence with respect to various one-factor and two-factor stochastic models of inter-
est rates. The econometric issues in testing the models are discussed. We also discuss
three approaches in determining the term structure of interest rates and the pricing of
interest-rate contingent claims, namely, the arbitrage-free method, the general equilib-
rium method and the perfect replication method. Some of the recent findings in the
actuarial literature on the stochastic behaviour of interest rates are summarized.

1 INTRODUCTION

Interest rate is an important determinant
of the values of assets as well as lLiabili-
ties. In the economics and finance litera-
ture, voluminous research has been done
on the linkage between interest rate and
the pricing of various assets, in particular,
fixed—income securities and interest-rate
contingent claims. Until recently, valua-
tion of the liabilities of an insurance com-
pany had been done mainly in the fixed—
interest rate environment. Thus, interest
rate is assumed to be constant during the
period of assessment and is exogenously
determined. Since the early 1980s, inter-
est rate has become more volatile. As

a result, the actuarial profession has in-
creasingly recognized the importance of
treating interest rate as a stechastic vari-
able. In this paper, we review some re-
cent developments in stochastic interest
rate models in the economics, finance and
actuarial literature.

Traditional economic research has fo-
cused mainly on the linkage between mon-
etary policy and real economic activi-
ties. The term structure has been shown
to have valuable information on future
economic activities. Research has also
suggested that, by shifting the structure
of risks, monetary policy may have im-
portant consequences for real long~term
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rates. Theories have been proposed to ex-
plain the term structure by various hy-
potheses concerning the expectations of
economic agents as well as the market
structure. In the last decade new research
directions have been initiated by consid-
ering interest rate as a stochastic vari-
able. The developments in the finance lit-
erature on the continuous—time processes
of security prices have greatly influenced
and enhanced our understanding of in-
terst rate movements. Various approaches
have been proposed to model the prices
of interest-rate contingent claims, includ-
ing pure discount bonds. Term siructure
models are then derived [rom these asset
prices,

Cash flow analysis is an important tool
for actuaries in the valuation of insurance
products. Among the various assump-
tions in the setup of a cash flow anal-
ysis, interest rate models and assump-
tions play an imporiant role. Actuar-
ies have been researching on the selection
of inierest rate models for their analy-
sis. Results have been drawn from the fi-
nance and statistics literature in identify-
ing proper strategies in the construction of
assumptions for cash flow analysis. It ap-
pears that interest in this area is growing
rapidly and it is a purpose of this paper
to summarize some of the recent findings.

This paper is organized as follows. In
Section 2 we review the stochastic models
of interest rates in the continuous-time.
Our focus is on the empirical evidence
with respect to various one-factor and
two—factor models. Some of the econo-
metric issues in testing the models are
discussed. Section 3 reviews three ap-
proaches in determining the term siruc-
ture of interest rates and the pricing of

interest-rate contingent claims. These
are the arbitrage-free method, the gen-
eral equilibrium method and the perfect
replication method. In Section 4 we sum-
marize some of the recent findings in the
actuarial literature on the stochastic be-
haviour of interest rates. Section & con-
cludes the paper.

2 STOCHASTIC INTEREST
RATE MODELS

2.1 Terminologies and Notations

Consider a pure discount (zero-coupon)
bond that pays one dollar at time
T. Let P, T), t < T, denote the
price of the bond at time {.  Thus,
P(T, Ty = 1. The yield-to—maturity
of the bond, denoted by fi{t, T}, is de-
fined as —log P(t, T}/(T —t). A plot of
the yield-to-maturity against the time-
to—maturity, 7 = T — ¢, is called the term
structure of interest rates. As we shall
only consider default-free bonds such as
Treasury securities, R{{, T) is the risk-
free rate of return at time 7 for bonds
with time-to-maturity 7. We define ry =
limmp; R(t, T) as the instantaneous risk-
free rate of interest and introduce the no-
tation 7y, = R(t, T). As such, r; is unob-
servable and should be regarded as a state
(latent) variable. Many term structure
models postulate that r, is the only deter-
minant of the term structure. These mod-
cls are called one—factor models. They
have the characteristic that interest rates
of all maturities are perfectly correlated.
Alternatively, the number of state vari
ables driving the term structure may be
extended to two or more. These models
are called multi-factor models. One pos-
sible extension is to assume thai, in ad-
dition to 7., the term structure is also de-
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termined by the long—term rate of interest
defined as £, = limyr_. R(¢, 7). One-
factor models in the literature typically
agsume that r; {ollows a continuous—time
diffusion process. In the next subsection,
we shall review some of these diffusion
processes and discuss the empirical find-
ings related to these processes.

2.2 One-Factor Models

We assume ¢ follows a diffusion process
driven by the following stochastic differ-
ential equation:

dr =& (0 —r)dt+or7dZ, (1)

where dZ is a standard Wiener process.
This model assumes r, follows mean—
reversion, with § being the long-rtun in-
stantaneous riskfree rate ol inlerest and
# being the speed-of-adjustment coeffi-
cient. [f we denote the instantaneous vari-
ance of r; by V(r,), the elasticity of vari-
ance, defined by (9V (ry)/dr,)/(r/V(r,))
is given by 2v. Thus, the model is char-
acterized by constant elasticity of vari-
ance and we call v the elasticity param-
eter. Many models in the literature are
special cases of equation (1). For exam-
ple, Merton {1973) considered the special
case § = v = 0, and Dothan (1978) as-
sumed K = 0 and v = 1, When § = 0
and v = 1, ry follows a geometric Brown-
1an motion. Perhaps, the most important
special cases of equation (1} are the fol-
lowing: (i} the Ornstein-Uhlenbeck {OU
hereafter) model (see Vasicek (1977)) with
v = 0, (ii) the Cox, Ingersoll and Ross
{(CIR hereafter) (1985b) model with v =
0.5," and (iii) the Brennan and Schwartz
(BS hereafter) (1979) model with ~ = L.

YThe CIR model is sometimes called the
square-root process.

One drawback of the OU model is that r,
may become negative. On the other hand,
while r; may become zero in both the CIR
and BS models, it can never become neg-
ative.

As we shall see in Section 3, stochastic
interest rate models have important impli-
cations for the pricing of interest—-rate con-
tingent claims such as bonds and bond op-
tions. Depending on the assumed process
for ry, some pricing models admit analytic
closed form solutions while others may re-
quire numerical evaluations. On theoreti-
cal bases, models that permit closed form
solutions may be desirable since they pro-
vide greater analytical insights. On the
other hand, wmodels that represent real-
ity inacurrately, or rely on unrealistic as-
sumptions, may incur model risk. A bal-
ance between the two issues is required
for a successful evaluation of interest-rate
contingent claims. In the rest of this sub-
section we review the empirical evidence
in the literature with respect to the appli-
cability of the one-factor models.
~ The following points are important in
assessing the empirical results. First, in-
terest rate data are only available at dis-
crete time points. Except for some spe-
cial cases (such as the geomeiric Brow-
nian motion, the Vasicek model and the
CIR model), the conditional density of r,
15 unkﬂewn. Some authors use discrete
models that approximate the continuous—
time process. But as argued by Lo (1988),
the discretized maximum likelihood esti-
mator (MLE) is in general inconsistent.
Second, 7, is an unobservable state vari-
able. Direct estimation of equation (1) or
its discretized approximation is impossi-
ble. Some authors get around this prob-
lem by using yields of short maturities,



such as one-month vields. Thus, data
on vy, with 7 being one month are used.
Obviously, this procedure introduces mea-
surement errors into the estimation. Al-
ternatively, one may use the steady-state
distribution of the interest rate process
and calculate the unconditional moments.
The parameters of the models may be esti-
mated using Hansen’s (1982) generalized
method of moments (GMM). The mod-
els can then be tested by examining the
overidentifying resirictions on the objec-
tive function.

Of the models nested in equation (1),
the CIR model has attracted most re-
search interests. One ol the reasons for
its importance is that closed form solu-
tions of the prices of pure discount bonds
and bond options are available. This en-
ables researchers to use bond price dala
and avoid using shorl-term interest rate
data, which may induce measurement er-
rors. Unfortunately, the bond price for-
mila depends on ry as well as the param-
eters of the CIR process.” Using cross
section data, however, it is possible to
treat v, as a parameler to be estimated.
Brown and Dybvig (1986) examined the
IR model using Treasury securities. Ig-
noring the tax effect, they considered
coupon bonds as a portlolio of pure dis-
count bonds. They examined the devia-
tion of the theoretical bond prices, as pre-
dicted by the CIR model, versus the ob-
served bond prices over a cross section of
hond data. Using nonlinear least squares
methods, they were able to estimate some
functions of the parameters of the model

*In addition to ry and the CTH model parame-
ters, the bond price formula also depends on the
market rigk parameter, dencted by A, See Section
3 below for further discussions.

as well as the riskfree rate of interest.® Ex-
amining the cross section estimates over
time, they concluded that the model sys-
tematically overestimates the short~term
In addition, the model
appears to fit Treasury Bills better than
other Treasury issues. This suggests that
the tax effect has not been adequately ac-
counted for.

Unlike the CIR process, the BS model
admits no analytic solution for the bond
prices. Also, the conditional density of
is unknown so that an exact MLE is im-
possible. Ogden (1987) estimated the BS
model using the discretized MLE. He used
vield data on Treasury bills with ninety
days to mature, and the results showed
that the short—term interest rate is ex-

interest rates.

pecied to revert halfway to the long—run
level in about one year.!

Making nse of the results on the steady—
state properties of the bond prices, Old-
field and Rogalski (1987) provided some
tests for the OU and CIR processes. They
argued that the differenced logarithmic

bond prices should be serially correlated

for both models. TFor the OU process,
the variance of the differenced logarith-
mic prices is expected to be equal among
subperiods for a fixed differencing infer-
val and maturity. In contrast, the var-
ance for the CIR process should be un-
stable for observations over short time in-
tervals, although this instability should
disappear over longer differencing inter-

315 the CIR bond pricing formula, not all pa-
rameters are identified. In particular, only &+ A,
%0 and ¢ are estimable from the cross seciion
data.

“0gden used nonlinear optimization methods
to obtain the MLE. Analytic solution of the dis-
cretized MLE for the BS model can be found in
Tse (1995a). See also Tse (1992).
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vals. This characteristic provides an in-
direct test for the OU model versus the
{IR model. Although formal significance

tests for the varving degree of stability of

the variance cannot be obtained, this ap-
proach circumvents the problem of unob-
servable state variables and the derivation
of the exact likelihood function. Oldfield
and Rogalski reported that the instability
in the variance appears to decrease with
increasing differencing interval. They ar-
gued that this is inconsistent with the OU
process and the term structure is better
represented by the CIR model.

A serious limitation of one—factor mod-
els is that the correlations between yields
of different maturities are umity. How-
ever, casual observations show that nom-
inal yields of different maturities are not
perfectly corvelated. Thus, it seems more
relevant to examine the applicability of
the one-factor models to real interest
rates. Following CIR’s assumption that
the changes in the price level have no ef-
fect on the real variables in the economy
(money-neutrality assumption), Gibbons
and Ramaswainy (1993) examined the ap-
plicability of the CIR model to the real
interest rates. They derived the first mo-
ment of real returns on nominal bonds.
The covariances of nonoverlapping real re-
turns with different maturities were also
obtained. These unconditional moments
are based on the steady-state distribu-
tions of the real yields and do net depend
on the unohservable state variable. Using
Treasury securities with maturity up to
12 months Gibbons and Ramaswamy es-
timated the parameters of the CIR model
by the GMM. They failed to reject the
overidentifying restrictions implied by the
CIR model. The esiimated parameter val-

wes, however, preclude a humped curve for
any value of r,. Thus, the model only al-
lows for upward- and downward-sloping
real term structures.

To caleulate the real veturn of Trea-
sury bills, Gibbons and Ramaswamy ad-
justed the nominal yields using the con-
sumer price index (CPI). The CPLis based
on prices of consumption goods sampled
at various times during a month. Thus,
to take CPI as the measured price level at
a single time point would introduce auto-
correlations in the real return series. This
problem appears to be difficult to over-
come when price data are required. Pear-
son and Sun (1994) proposed a method
that does not require price data. They as-
sumed a price process suggested by CIR,
in which the price level p, depends on a
state variable y, that is independent of
ry. In this model the price of a nominal
bond admits a closed form solution that
depends on the state variables v, and y,,
as well as the parameters of the stochas-
tic processes driving r, and p;. 'LThe price
formula, however, does not depend on p,.
Under the assumption of independence
between 7, and gy, the joint density of
these variables can be obtained straight-
forwardly. Inverting the state variables
as functions of bond prices with differ-
ent maturities, Pearson and Sun obtained
the conditional density of the bond prices.
They estimated the model using MLE.
The results for the likelihood ratic fest
rejected the CIR model. It should be
noted, however, thal the Pearson and
Sun approach provides a joint test for the
CIR model and the specified price process.
Thus, they effectively tested a two-factor
model for the nominal term structure.

An important implication of the CIR
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model 1s that the long—term rate of inter-
est £, is independent of . In particular,

2x 0
e — 2
& b A by 2

Thus, if the parameters of the CIR model
are stable, £, is expected to be a con-
stant. The volatility observed in long-
term nominal yields easily rejects this con-
dition, suggesting that the CIR model is
inapplicable to nominal yields. Brown
and Schaefer {1994) constructed a series of
real long—term yields using British govern-
ment index—linked bonds. They observed
a time series with a high degree of sta-
bility. Using the Brown-Dybvig approach
they estimated the parameters of the CIR
mode! from cross sections of bonds with
different maturities. The model appears
to provide a good fit for cross sections.
However, the hypothesis that the param-
eter values are stable over time is firmly
rejected.

As a model derived from the general
equilibrium setup with closed form solu-
tion for the prices of bonds and bond
options, the CIR model assumes a spe-
cial role in the literature. This explains
the overwhelming interest in testing the
model. However, within the general dif-
fusion process given in equation (1) there
is no apriori reason for setting the con-
straint v = 0.5. Furthermore, analytic
tractability can also be found in the QU
process, although the process has a draw-
back of permitting the interest rate to
take negative values. From the empiri-
cal point of view it may be useful to start
from the general unrestricted model and
proceed to examine if the data support
a particular model. This approach was
adopted by Chan, Karolyi, Longstaff and

Sanders (CKLS hereafter) (1992a). Using
monthly data on one-month U.S. nomi-
nal yield they estimated the parameters
of the unrestricted model using GMM.?
The estimated value of v is found to be
1.4999, which is about two standard devi-
ations above 1. Thus, the OU, CIR and
BS meodels are all rejected against the un-
restricted model. The results suggest that
the volatility is highly dependent on the
level of interest rates.

Several emapirical issues should be noted
in the CKLS approach. First, nominal
one—month yields are used. Due to the
existence of term premium, measurement
errors are introduced. As pointed out by
Pearson and Sun, the term premium may
be very significant, depending on the val-
ues of the riskiree rate of interest and
the market risk parameter. Second, the
approach provides no information on the
market risk parameter. Third, the mo-
ment functions used by CKLS are not
based on the steady—state distribution of
interest rates.® They are derived from
the discretized approximation to equation
(1). Thus, the approach is subject o er-
rors due to discretization. Broze, Scail-
let and Zakoian {1993} proposed an in-
direct estimation method that can elim-
inate the bias due to the discretization
of the model. The method is simulation—
based and involves the construction of an
approximate likelihood function. Asymp-
totic properties of the indirect estimates
were analysed in Broze, Scaillet and Za-
koian (1995). These authors, however,

*Some empirical results on the Japanese data
using the MLE method were given by CELS
(1992h).

SExcept for some special cases such as the QU
and CIR modeis, the steady—staie distribution of
7¢ in the unrestricted model is unknown.
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assumed that r, is observable or a good

proxy for it is available. The problem of

measurement errors is not considered in
their analysis.

Following the CKLS approach Tse
(1995b) examined the stochastic be-
haviour of short—-term interest rates in
eleven countries. He considered eight
stochastic models of interest rates nested
within equation (1}. Three-month money
market rates were used in the study. The
results showed that no single model can
satisfactorily describe the structure of in-
terest rates for all countries. Tor France,
Holland and U.5., the elasticity of vari-
ance is above 1.5, Canada, Italy, Switzer-
land and UK. are the countries where
the elasticity of variance is low. The QU
model may be preferred for these coun-
tries. Tor Australia, Belgium, Germany
and Japan, the elasticity of variance is
moderate. For these countries, there is no
clear-cut statistical evidence in choosing
between the CIR and BS models.

The CIR model permits three shapes of
vield curves: downward-sloping, humped
and upward-sloping. As  inverted-
humped yield curves have been observed
m practice, the CIR model is incomplete
in describing the data. Constantinides
(1992) proposed an alternative approach
to model the nominal interest rates that
can overcome this difficulty. His approach
assumes that there exists a pricing kernel
M{t) such that

P(t, T) = B[M(T)/M(),  (3)

where E,{ -] denotes the expectation con-
ditional on the information at time ¢. The
existence of M (7) may be justified by as-
suming an economy in which the con-
sumers have Von Neumann-Morgenstern

preferences. However, instead of explor-
ing along this line, Constantinides exam-
ined directly the time series process of
M(t). Assuming that M (1) depends on
some stale variables which are either a
Wiener process or an QU process, he de-
rived the closed form solutions for bond
prices and bond oplion prices. Analyiic
formulae for the nnconditional moments
of the interest rates were also given. Thus,
calibration of the model parameters us-
ing the GMM approach can be obtained.
Constantinides reported some empirical
results on a one—factor model. The mode]
permits all four shapes of yield curves, de-
pending on the value of the state variable.
Another interesting result is that the half
life of the state variable is approximately
equal Lo the length of the business cycle.

Commenting on the inability of the
CIR model to take account of humped
term premiums as noted above, Longstaff
(1989) proposed an alternative model
within the general equilibrium framework
constructed by CIR. Designated the dou-
ble square root (DSR) model, r, is given
by the lollowing stochastic differential
equation:

dr = g (- \/rydt + o /rdZ, (4)

where g = o?/(4x). Thus, unlike the CIR
model the DSH model has only two in-
dependent parameters. An important im-
plication of the DSR model is that inter-
est rate reverts to the long-run level p?
more slowly from above thaw from below.
Longstafl calibrated the D3R model using
the GMM approach and argued that the
DSR model provided better description of
the data than the CIR model.

The inability of the onefactor CIR
model to explain the empirical behaviour
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of interest rates has led some researchers
to explore multi-factor models.  Stam-
baugh (1938) examined the issue of one-
factor versus multi-factor models within
the general equilibrium term structure
model of CIR. He argued that the CIR
model implies that the expecied excess
returns are linear functions of the for-
ward preminms. The number of Jatent
variables determining the forward premi-
ums equals the number of state variables
in the model. His GMM analysis of the
U.S. Treasury securities with different ma-
turities rejects a one—factor CIR model,
while a two— or three—factor model may
adequately describe the variations in ex-
cess returns. This study focused on the
mmber of state variables determining the
term structure. The identities of the term
structure, however, are not investigated.
In the next subsection we shall review
some of the multi-factor models of the
term structure,

2.3 Multi—Factor Models

As noted above, one-factor models 1m-
pose a constraint that the yields of bonds
with different maturities are perfectly cor-

related. The shapes of the yield curves of

one—factor models may also be restricted.
To overcome these drawbacks and con-
straints, some authors proposed multi-
factor models for the term structure,
Richard ({1978) suggested a two-factor
model in which bond prices are deter-
mined by the instantancous rate of inter-
cst r, and the anlicipated instantaneous
rate of inflation w,. Using arbitrage-{ree
arguments,” he derived a sclution for the
bond price, which is determined by a par-
tial differential equation. For the spe-

"See Section 3.2 below for an outline of the
arbitrage—free approach,

cial case that r, and m, are uncorrelated
square-root processes and that the prices
of risks of r; and =, are functions of the
square root of these variables, Richard de-
rived closed form solutions for the bond
prices.  Similar to the one-factor CIR
model, however, Richard’s model implies
that the yield of a consol bond is constant.

Brennan and Schwartz (1979) proposed
an alternative two-factor model. They as-
sumed that bond prices are determined by
the instantaneous rate of interest ry and
the long term rate of interest £,. These
state variables are assumed to follow a
joint diffusion process. Correlation be-
tween the two variables is permitted. Us-
ing an arbifrage—{ree argument similar to
that of Richard, they derived the partial
differential equation which determines the
prices of bonds of any maturity. Apart
from the state variables r, and £, the bond
prices also depend on the market prices of
risks of 7y and £,. However, making use of
the fact that 4, is a [unction of the price
of a traded asset, i.e., the consol bond,
BS showed that the price of risk of £, can
be expressed as a function of ry, £ and
the price of risk of r,. This reduces the
aumber of determinants for bond prices to
three. The differential equation for deter-
mining the bond prices was derived. No
analytic solution, however, 1s obtainable.
An important implication of the model is
that the price of a bond is independent of
the expected rate of return of the consol
bond. BS likened this result to the find-
ing of the Black-Scholes (1973) model for
pricing stock options that the option price
is independent of the expected return of
the stock.

To derive a model that is empirically
tractable, BS made some simplifying as-
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sumptions. First, they assumed that the
market price of risk is constant. Second,
they specified that the standard devia-
tionn of the unanticipated instantaneous
changes in interest rate is proportional to
the current level of interst rate, both for
re and £,.% Third, they required the log-
arithm of ry to regress {0 a level that is
dependent on both r» and 4. The -
terest rate processes were then linearized
and discretized to obtain a simultaneous
equation system. To proxy the state vari-
ables, BS used yields on 30-day Cana-
dian Banker’s Acceptances as r; and the
average yields on Government of Canada
bonds with maturities in excess of 10 years
as {;. They obtained some estimates of the
two-equation system. The results showed
that half of the adjustments in r; occurs
within 10 months. The estimated model
was used to predict yields—to-maturity.
The relationship between the actual and
predicted values, however, was found to
be erratic.

Chen and Scott (1992} developed a
two—factor model within the framework of
general equilibrium pricing constructed hy
CIR. They assumed that r; is delermined
by two state variables yi; and yo; such that

T = Yo+ Yo (5)

These state variables are assumed to fol-
low two independent square-toot process.
To capture the observed variability of in-
terest rates, Chen and Scott suggested
that the parameters of the model should
be set such that yi; has a strong mean re-
version and ¥, has extremely low mean
reversion. Although Chen and Scott ex-
pected the variation in the short—term in-

®This means that the elasticity parameter is
set to 1.

terest rate to be captured by yy, and the
variatlon in the long—term interesti rate to
be captured by yy;, these variables were
not given clearcut economic interpreta-
tions. As a consequence of the CIR model,
the price of pure discount bonds can be
calculated as the expected values of future
inferest rates in a risk-adjusted world.
Closed form solution was provided. So-
lutions were also developed for a variety
of interest rate contingent claims such as
coupon bonds, coupon bond futures, BFu-
ropean options on pure discount bonds,
Eurodollar futures and floating rate caps.
An advantage of this model is that the
solutions for bond options can be eval-
uated as univariate integrals. However,
due to the lack of intepretations for the
state variables, it appears that the model
can only be assessed on its ability to pre-
dict the prices of interest rate contingent
claims.
model was provided.

No empirical calibration of the

An alternative model developed within
the general equilibrium framework was
proposed by Longstafl and Schwartz
{1992). They assumed that returns on
investments are determined by two state
One of these variables influ-
ences the expected return component only
and 1s unrelated to the production un-
certainty, while the other variable repre-
sents the expected return as well as the
variance component. Making use of the
assumption of a logarithmic utility func-
tion, Longstaff and Schwartz transformed
the determining variables to the instan-
taneous riskiree rate r; and its variance
V.. In this model both r; and V, have 2
long-run stable distribution. Using the
[undamental partial differential equation
given by CIR, Longstaff and Schwartz de-

variables.



rived closed form solutions for the prices
of pure discount bonds and discount bond
options. These results imply that the
changes in yields are known functions of r
and V. The cross—section constraints im-
posed on the term structure can be writ-
ten as:

Oryy = by v 4 op DV, (6)

where b, and ¢, are maturity-specific
fanctions that depend on the parameters
of the stochastic processes determmuning ry
and V.

Making use of the constraints imposed
in equation {6), the two—factor model can
be tested against the general CIR model
using the GMM approach. As ry and
V. are unobservahle, proxies have to be
used. Longstaff and Schwartz used yield
on I-month U.S. Treasury bills for ry.
For V, they estimated the values by fit-
ting a generalized autoregressive condi-
tional heteroscedasticity {GARCII) model
to ry. Using securities with eight differ-
ent maturities they tested the overidenti-
fying restrictions on the data. The results
showed that the restrictions cannot be re-
jected. This conclusion applied to yields
with maturity of up to five years. Further
tests on the one-factor model, however,
rejected the overidentifving resirictions.

Research in multi-factor models have
been motivated by the need to avoid per-
fect correlation between vields of different
maturities. Limited empirical findings on
multi-factor stochastic processes of inter-
est rates are available. FPurthermore, these
empirical results are dependent on the use
of proxies for the unobservable state vari-
ables and are thus subject to measure-
ments errors.

As we have seen, stochastic interest

rate models have important implications
for the pricing of interest rate contingent
claims. The results in pricing these as-
sets in turn provide methods for calibrat-
ing the interest rate processes. There are
several different approaches to the mod-
elling and determination of the prices of
the interest rate contingent claims. In the
next section, we shall review the develop-

ments of these approaches.

3 TERM STRUCTURE MODELS
AND PRICING OF INTEREST
BRATE CONTINGENT CLAIMS

3.1 Overview
The literature on models of term struc-
ture is vohuninous. Traditional theories
focus on the relationship between the for-
ward rates and the future spot rates. The
expectation hypothesis, the liquidity pre-
mium hypothesis, the preferred habitat
hypothesis and the market segmentation
theory belong to this category.” These
theories offer dilferent explanations to the
variations in the term premiums. As
pointed out by CIR {1985h), however,
these theories are only hypotheses that
do not go beyond saying whether the for-
ward rates should or need not equal the
expected future spot rates. They are hm-
ited in their predictions and causal expla-
nations. Making use of continuous-time
analysis, modern theories In term struc-
ture are able to provide richer models with
specific implications and predictions suit-
able for empirical testing.

In the continuous-time setting there
are three modern approaches to the mod-
elling of the term structure of interest

¥See McEnally and Jordan (1991} for a review
of these hypotheses.
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rates.  The arbitrage-free approach, pi-
oneered by Vasicek (1977) made use of
an argument similar to the Black-Scholes
(1973) model for the pricing of option on
stocks. This approach assumes that there
are one or more state variables that de-
termine the whole term structure. The
stochastic models driving these state vari-
ables are specified. The prices of interest
rate contingent claims (including the pure
discount bonds) are then derived by im-
posing the condition that there are no ar-
bitrage opportunities in the market. The
general equilibrium approach proposed by
CIR (1985a, 1985bh) begins with a frame-
work of the underlying economy. Assump-
tions about the state variables determin-
ing the economy are made. The pref-
erences of a representative Investor are
also specified. In this approach both the
term structure and the prices of interest
rate contingent claims are derived endoge-
nously as solutions satisfying the equi-
librium conditions. The perfect replica-
tion method was developed as a varia-
tion to the arbitrage-[ree approach. In
this approach the evolution of future in-
terest rates are consirained to follow a
structure such that given the initial yield
curve there are no arbitrage opportunities
in the market. This approach was first
developed by Ho and Lee (1986) in the
discrete time setting. It was subsequently
extended by Heath, Jarrow and Morton
(HIM herecafter) (1992) and Ritchken and
Sankarasubramanian (1995), among oth-
ers. In this section we review these ap-
proaches of term structure modelling.

3.2 Arbitrage—Free Method

The arbitrage-free approach was pio-
neered by Vasicek (1977} for the one-

factor model. Vasicek assumed that the

mstantancous rate of interest follows a dif-
fusion process and that the price of a pure
discount bond depends on the instanta-
neous interest rate only. The market is
assumed to be efficient so that there are
no riskiree arbitrage opportunities. Thus,
ry iz driven by the following stochastic dif-
ferential equation:

dr = p(r, t)dt + olr, 1) dZ, (7)

where dZ is a standard Wiener pro-
cess, and u(r, {) and o{r, t) are, respec-
tively the drift rate and the instantaneous
standard deviation of r.!° Using Ito’s
lemma, with the simplifying notation P =
P{1, T}, po = plr, t) and o, = o(r, 1), the
price of a pure discount bond satisfies the
following equation:

dF = Pupdt + Pop dZ, (8)
where
prP = Pt Pt 2otP (9)
and
O’pp = —;:rTPr. (10)

In the above formulae, P, P, and P, de-
note partial derivatives. Suppose an in-
vestor diversifies between two bonds with
maturities 7, and 7. If we denote the drift
rates and the instantaneous standard de-
viations by pup, P and op P, for ¢ = 1, 2,
respectively, then the absence of arbitrage
opportunities implies that
ppy— T Hpr Ty

(11)

IpP1 Jra

""Note that we have used dZ to denote generi-
cally a standard Wiener process. The stochastic
parts of equations (1) and (7) {also (8) and (13)
below) need not be related.



Since this result is true for arbitrary val-
ues of 7, and 74, the common ratio in equa-
tion (11} must be independent of 7. De-
noting the common ratio by ¢ = g(r, 1},
the arbitrage-free condition implies:

1, ,
Pt {ppr + ovg) By + 507 Por (12)

P

—r P = 0.

This is the fundamental equation that
determines the price of a pure discount
bond.

The quantity ¢ is called the market
price of risk, as it gives the excess return
over the instantaneous rate of interest per
unit risk as measured by the instanta-
neous standard deviation. To derive spe-
cific solutions for the term structure, Va-
sicelt assumed that the price of risk is a
constant independent of ¢ and r;, and that
r, follows an Ornstein-Uhlenbeck process
given by the following equation:

dr = & {8 —r)di+ dZ. (13)

Vasicek derived the closed form solution
for the bond price. Exact solution for a
European option on pure discount bond
is given by Jamshidian (1989).

Brennan and Schwartz (1979) extended
the Vasicek approach to a two-factor
model. Bond prices are assumed to de-
pend on r; and £, In this model, the
arbitrag—{ree condition implies that there
are two restrictions on the drift rates and
standard deviations of the bond prices.
That is, the ierm structure depends on
two market prices of risk. However, mak-
ing use of the fact that £; is a function of
a traded asset, that is, the consol bond,
one of the market price parameters can
be substituted out.

Although Vasicek’s approach implies
equation {11), il does not say anything
about the Tunctional form of the market
price of risk ¢. Many authors make ar-
bitrary assumptions about the functional
form of g, such as the simple assumption
that ¢ is a constant. This approach, how-
ever, was criticized by CIR (1985b). They
argued that not all choices of ¢ will lead to
bond prices which do not admit arbitrage
opportunities. Thus, closing the model by
assuming a specific form for ¢ may lead
to internal inconsistency. CIR’s general
equilibrium model is developed to over-
come these difficulties. It assures that the
term structure model is completely speci-
fied without losing internal consistency.

3.3 General Equilibrium Method

CIR {1985a, 1985b) considered a continu-
ous time competitive economy with a sin-
gle good. Production opportunities are
represented by n linear activities. The
vector of expected rates of return is «
and the covariance matrix of the rates
of return is GG, DBoth a and G are
functions of b state variables represented
by vector Y.  The vector of expected
changes in Y is g and its covariance ma-
trix is 557, The elements of ¥ are deemed
to determine the technological changes
and production opportunities open to the
economy. CIR assumed that the econ-
omy consists of individuals with identical
VYon Neumann-Morgenstern utility func-
tions, They seek to maximize the ex-
pected value of the aggregate discounted
utilities and subsequently choose the op-
timal level of consumptions as well as in-
vestments in the production activities and
contingent claims. In equilibrium, the in-
terest rate and the expected rates of re-
turn in the contingent claims would ad-
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just until all wealth is invested in the pro-
duction processes. The market clearing
condition leads to two fundamental equa-
tions that defermine the equilibriuum in-
stantaneous rate of interest and the value
of any contingent claim. CIR further
specified the preference siructure to fol-
low a logarithrnic utility function. Denot-
ing [7 = F({Y,t) as the equilibrium value
of a contingent claim, CIR showed that
the following differential equation must be
satisfied:

(58 Fyy) + [1f — a”GSFy  (14)
+ Ft + 5 - T'F = 01

b

where § is the payout flow received by the
contingent claim, a” is the vector of opii-
mal proportions of wealth to be invested
in production activities, and Fyy, Iy and
F} denote partial derivatives.

To derive a specific term structure
model CIR considered a single-factor
model with & = 1 such that ¥ is a scalar.
"They assumed Y is driven by the following
stochastic differential equation: :

dY = (§Y + () dt +vvY dZ.  (15)

It 1s then straightforward to show that
r; follows the continuous-time mean-
reversion process defined in equation (1}
for some constants «, 8 and 2. In partic-
ular, r is a constant multiple of ¥V and
the distribution of r; conditional on r,,
s < t, follows a noncentral chi-square. As
t approaches infinity we obtain the steady
state distribtuion of r;, which follows a
gamma variable. Making use of equation
(14), it can be shown that the price of
a pure discount bond that matures at 7',
P = P(t, T), satisfies the following par-

t1al differential equation:

1 .
5 a*r P+ x (0 —r)y P+ B, (16)
— AP, —rP =10,

where F.., P, and P, denote partial
derivatives, and A = ¢¥(GS" is the market
risk parameter. It is noted that A is a con-
stant independent of the time to maturity
= T—t CIR gave closed form solution
for P, which depends on the parameters
k8, £+ X and o, Thus, the yield to matu-
rity r¢ , can be easily calculated from the
price of the pure discount bonds.™?

CIR’s approach has been applied to
multi-factor models by several authors.
For example, Longstalf and Schwartz
(1992} and Chen and Scott (1992) devel-
oped two—factor models in the CIR frame-
work. As noted above, the fundamental
equation (11) depends on the assumption
of logarithmic utility. Furthermore, few
authors have developed alternative mod-
els beyond the square-root process, al-
though the fundamental evaluation equa-
tion applies to a general class of diffu-
sion processes.!® It is not sure how robust
the CIR model is with respect to the as-
sumption of the utility function. Allowing
the structure of ¥ to take alternative pro-
cesses will enhance the generality of the
model, although analytic solutions may
not be easy to obtain.

3.4 Perfect Replication Method

"Note that Ar is the covariance of changes in
7y with the percentage changes in the optimally
invested wealth. CIR called A the “market” risk
parameter, It should be distinguished from the
market price of risk ¢ as defined in eguation (11},

LICIR also provided close form solution for the
European option on pure discount bond.

3The model suggested by Longstaff (1989} is
perhaps an exception.
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Making use of the arbitrage-{ree condition
Ho and Lee (1986) proposed a model for
the determination of future interest rate
movements and the pricing of contingent
claims. Their model is constructed to
replicate the current term structure per-
fectly. Thus, they take the current yield
curve as given and derive the feasible sub-
sequent term structure movements. The
movements are constrained to be consis-
tent with an efficient market so that there
are no arbitrage opportunities. Ho and
T.ee considered interest rate movements in
discrete time. The future term structures
are assumed o depend on a set of dis-
count functions that form a binomial lat-
tice. The term structure may evolve from
one vertex to another by different paths,
but the path will not affect the value of
the discount function at the vertex. Thus,
the discount function is path independent.
Prices of contingent clalms can be evalu-
ated by backward substitution, in a way
similar to the Cox, Ross and Rubinstein
(1979) method for the pricing of stock op-
tions.

As a consequence of a one-factor model,
the bond prices in the Ho-Lee model are
perfectly correfated. FLJM {1992) gener-
alized the Ho-Lee model to a continuous
economy with multiple factors. They take
the stale vector as the entire forward rate
curve. Movements in the forward rates are
asstmed to depend on a finite number of
standard Wiener processes. Making use of
the results in Harrison and Pliska (1981),
HJIM characterize the forward rate process
so that it is consistent with an arbitrage—
free economy.

A difficulty with the HIM mode] is that
the interest rate process is generally path
dependent. Thus, the future evolution of

interest rates depends on the entire his-
tory of the interest rates and not just the
current yield curve. Simulation of interest
rates and the valuation of the price contin-
gent claims may be very computer inten-
sive. Ritchken and Sankarasubramanian
(1995) proposed an alternative approach
in which the path—dependence is summa-
rized in a single sufficient statistic. Their
model is two-factor Markovian. An algo-
rithm is suggested, with the implementa-
tion of a control variate to improve the
efficiency.

in the Ho-Lee approach the risk-
neutral probabilities at each node are es-
tablished to ensure that all pure discount
honds are priced correctly according to
the current term structure. Alternatively,
we may use the arbitrage-free condition to
establish the possible states of the world,
given assumed risk-neutral probabilities.
Tilley (1992) outlined an algorithm for
this approach. Hqual-probability paths
of interest raies are generated by ran-
dom sampling. The interest rates are
then adjusted, epoch. by epoch, to en-
This s
achieved by imposing the constraint that
the expected present value of a payment
at the next epoch is equal to the given

sure arbitrage-free conditions.

nitial spot price.

Unlike the arbitrage—free method and
the general equilibrium method, the per-
fect replication approach does not depend
explicitly on the market risk parameter.
indeed, the market risk is reflected implic-
itly in the current term struciure. The
perfect replication method, however, de-
pends critically on the current term struc-
ture. Pricing errors may incur if the cur-
rent, term structure cannot be measured
accurately. Furthermore, by assuming the
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current term structure to be arbitrage-
free, the perfect replication method does
not enable cne to identify arbitrage op-
portunities. qwp

4 INTEREST RATE MODELS IN
ACTUARIAL 5CIENCE

Apart from being an important determi-
nant of the value of many assets, interest
rate may also be an important factor in
determining the value of Habilities. The
net value of an insurance company may
be very sensitive to the movements of in-
terest rates. Actuaries call the risks asso-
ciated with interest rate fluctuations the
-3 risks. An insurance company may be
selected against when interest rate moves,
causing a block of business which was orig-
inally profitable to become unprofitable.
Take the case of a Single Premium De-
ferred Annuity (SPDA) product for exam-
ple. When interest rate increases the cred-
ited rate is less than the new money rate.
Disintermediation may occur due to the
surrender of policies. The lapses may be
kept down by crediting old policies with
new money rates. This strategy, however,
may incur losses for existing business. On
the other hand, when interest rate drops
the duration of the SPDA lengthens due
to fewer lapses. In this case, the pelicy
holders bear the reinvestment risks.

To properly assess the (-3 risk ac-
tuaries use a technique called cash flow
analysis."® In cash flow analysis liability

HMCash flow analysis is a well-established tech-
nigue used by actuaries. The U.S. Actuarial
Standard Board gave some guidelines as to how
cash fow analysis should be conducted. The Ac-
tuarial Standard of Practice No. 7 prescribes
appropriate procedures for performing cash flow

and asset cash flows are projected into the
future under various interest rate scenar-
ios. Depending on the product being an-
alyzed, other assumptions such as lapse
rate, prepayment rate, expenses, reinvest-
ment rate, market rate and credited rate
strategies have to be specified. Interest
rate assumption, however, is perhaps the
most important factor for a cash flow test-
ng.

A scenario set is defined as a sequence
of interest rate scenarios. The scenario
set may be constructed in several ways.
One approach s to arbitrarily select a set
of scenarios that seem to cover the ma-
jor possibilities.'® There are some draw-
backs to this approach. First, the number
ol scenarios is unlimited and no single sce-
nario is likely to occur in practice. Second,
probability statement about the outcome
of the test is impossible.

Apart from arbitrary scenarios, two
other methods are widely used in prac-
tice: the transitional probability method
and the lognormal method. In the tran-
sitional probability method a universe of
standard yield curves are defined. These
vield curves may be constructed to rep-
resent historical observations. A matrix
of transitional probabilities is then cre-
ated. The matrix consists of probabili-
ties p;; of a yield curve C; being followed

testing. It instructs actuaries performing such
testing to describe their procedures and docu-
ment their assumptions. The Actuarial Standard
of Practice No. 14 provides guidelines to actu-
aries in determining whether or not to perform
cash flow testing as part of forming a professional
opinion. The Standard provides guidance to ac-
tuaries in determining the type and depth of such
testing.

*The New York Regulation 126 arbitrarily de-
fines a set of seven scenarios. See Jetton (1990)
for further discussions.
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by C;. A yield curve Cp that resembles
most closely to the existing rates is deter-
mined. Subsequent interest rate scenar-
ios are then generated using Monte Carlo
methods. Depending on a set of “reason-
able conditions” Christiansen (1992) pro-
posed several interest rate generators that
vary by the intended purposes. In a sub-
sequent paper Christiansen (1994) refined
the development of the generator, called
the Markov Chain Generator (MCG), to
include 11 shapes of yield curves. A ma-
trix of transitional probabilities was deter-
mined. An algorithm for determining the
initial shape code of the yield curve was
also suggested.

The lognormal method assumes that
ratios of interest rates are
jointly lognormally distributed.  Thus,
if we denote R° as. the short-term
say) interest rate and Rh

SUCCessIve

{3-month,
as the long—term {l10-year, say) in-
terest rtate, then log(R7,./R7) and
log(RE (JRE) follow jointly a bivariate
normal distribution.'® Random numbers
are generated to obtain a sequence of in-
terest rates (R, £F).Y7 Intermediate in-
terest rates can he ohtained by interpola-
tion.

As the reliability of cash flow testing de-
pends critically on the underlying inter-
est rate assumptions, the importance of
generating realistic interest rate scenarios

18We dencte RY and R generically as R. We
also define 2, as log( Ry /Ry

" Pwo advantages of the lognormal assamp-
tion are that it cannot result in negative in-
terest rates and that i is multiplicative over
time, i.e., over » time periods, we have Ry, =
o L\p{g S0, Zi), where Z; are independently
and identically distributed standard normal vari-
ables and o is the standard deviation of the log-
arithm of suceessive ratios of R;.

cannot be overemphasized. Becker (1991)
examined the applicability of the lognor-
mal assumption of interest rates. He stud-
ied the U.S. Treasury securities with six
different maturities. Under the lognor-
mal assumption, the following separate
hypotheses are implied: (1} z, are seri-
ally independent, {ii) z; are normally dis-
tributed, and (iii) z; have mean zerc and
constant variance. Becker examined these
hypotheses separately. He concluded that
except for the hypothesis that z, have zero
mean, all other hypotheses were rejected.

Becker’s findings raise the question
whether the lognormal assumption should
be used in cash flow testing. Although
Becker’s results convincingly reject the
hypothesis that interest rates follow & log-
normal distribution, it does not follow au-
tomatically that cash flow analysis using
the lognormal assumption would lead to
unreliable results. Two questions need to
be answered: {i) Are there other models
that describe the distribution of interest
rates better than the lognormal model?
and {ii) How robust are the results of cash
flow testing to the assumplions of interest
(1993) work attempted to
answer these guestions.

rates? Klein's

As an alternative to the lognormal
model Klein {1993) investigated the appli-
cability of the stable Paretian model to in-
terest rate data. Mandelbrot {1963) pro-
posed the stable Paretian distribution as
a distribution for describing data of secu-
rity prices. Fama and Roll (1968, 1971)
provided the foundation for the statistical
analysis of this distribution. The full sta-
ble Paretian distribution that allows for
asymmetry is characterized by four pa-
rameters. TFollowing the definition pro-
posed by Zolotarev (1957) and adopted by



McCulloch {1986}, the logarithmic char-
acteristic function of the stable Paretian
distribution is given by:

U(u) = log E{e™¥)

e
fu—
~3

R—

tud — |eul* [t — 17 sign(u)

* tan(j—i?)} o # ]

s

fud — jeul {1 4+ 18 % sign{u)
x log {uf]

=1,

where X is a stable Paretian variable, u is
the parameter of the characteristic func-
tion, 1* = ~1 and a, 3, § and ¢ are,
respectively, the characteristic exponent,
the skewness parameter, the location pa-
rameter and the scale parameter., The
normal distribution is a special member
of the family with @ = 2, and is the
only stable Paretian distribution for which
the variance exists, When o < 2, ab-
solute moments of order less than o ex-
1st, while those of order greater than or
equal to o do not. With the exception of
the normal distribution the stable Pare-
tian model does not admit closed form
solution for its demsity function in gen-
eral. Thus, estimation using the MLE
method is intractable. Fama and Roll
(1968, 1971) suggested a fractile method
based on the ordered statistics. This
method was improved by McCulloch, who
took account of asymmetry, corrected the
bias in the Fama~Roll results and consid-
ered a broader range of o.

Klein applied the stable Paretian model
to fit 30-year U.S. Treasury yield data.
He examined the hypothesis that the log-
arithm of successive yield ratios are in-
dependently and identically distributed
as stable Paretian variables and argued

that the evidence supports this hypoth-
esis. However, using the Fama-Roll re-
sults Klein’s analysis was restricted to
symmetric stable Paretian distributions.
This imitation was relaxed by Cardinal in
his discussion on Klein’s paper. Cardinal
used McCulloch’s tables to estimate the
parameter 5. Using Monte Carlo meth-
ods, Cardinal found that the hypothesis
 is zero cannot be rejected. An impor-
tant property of the stable Paretian dis-
tribution is that it is invariant under ad-
dition. That 15, a sum of independently
and identically distributed stable Paretian
variables with characteristic exponent « is
again stable Paretian with the same ex-
ponent. Cardinal’s analysis showed that
there is no evidence of instability in the
estimates of & with respect to varying sum
sizes. This finding, however, is limited due
to the effects of a small data set.

Klein examined the sensitivity of cash
flow testing to the lognormal and stable
Paretian distributions. He compared the
surplus vatues of a SPDA product under
the two interest rate assumptions. In his
study he incorporated detailed actuarial
assumptions such as lapse rates, credited
rates, taxes and expenses. His results
show that the final surplus is very sen-
sitive to the assumptions of the interest
rate processes. In particular, the proba-
bility of a negative surplus for the stable
Paretian model exceeds that of the lognor-
mal model substantially. However, due to
the lack of actual surplus data for compar-
ison, Klein's study cannot indicate which
model is preferable in practice.

Recently, Tse (1995c) examined the
following models of short—term interest
rates: the lognormal model, the sta-
bie Paretian model and the (discretized)



tion (1. Toisolate the effects of the choice
of interest rate models to cash flow testing
he examined the generated interest rate
scenarios directly. The 95 percent inter-
vals of the samples of simulated paths, as
well as the distributions of the accumu-
lated values and the average yields over
several durations were considered. The
results showed that the lognormal model
is likely to generate unrealistic scenarios
even for horizon of live years. While the
stable Paretian model gives results simi-
lar to the mean-reversion model for five-
vear horizon in lerms of the 95 percent in-
terval, it may generate very extreme val-
ues in the upper tail of the distribution.
The generated scenarios for the mean re-
version model is sensitive Lo the estimate
of the long—run interest rate level. Overall
he favoured the use ol fhe mean-reversion
model as the effect of mean-reversion pre-
vents the interest rates from reaching un-
reasonably high levels.

In the insurance literature, the theory
ol life contingencies was traditionally de-
Thus,
mortality is assumed io follow a known
mortality table or function, and inter-
est rate i3 assumed to be constant. In
the early 1980s interest rate became very
volatile and actuaries began to realize that

veloped in a deterministic way.

the assumption of constant interest rate
is unrealistic. Boyle (1976} explored the
stochastic structure of the force of inter-
est as normally distributed random varl-
ables. Ewvaluation of the moments of the
present value functions became a {opic
of major importance. Dhaene {1989) de-
veloped a practical method for comput-
ing the moments of insurance functions
when interest rates are assumed to fol-

low an autoregressive integrated moving
average process. The results can be ap-
plied to many imsurance products. Pa-
pachriston and Waters (1991) considered
a simple lognormal model and focused on
evaluating the present value of the profit
of a long~term sickness policy. I'or annu-
ity business, Beelkman and Fuelling (1991)
suggested a method for determining con-
tingent the reserves when interest rates
are stochastic. [urther results can be
found in Vanneste, Goovaetrs and Labie
(1994). As actuaries have recognized the
importance of incorporating stochastic in-
terest rates in the valuation and pricing
of insurance products, further research on
this topic in the insurance literature 1s

expected.t®

4 Conclusions

We have reviewed some recent develop-
ments in stochastic interest rate models
economics, finance and actuarial science.
While there has been much progress in the
theories of the determination of the term
structure and the pricing of interest-rate
contingent claims, there are still many
unanswered guestions with respect to the
empirical models that best describe the
historical interest rate data. Empirical ev-
idence for multi-factor models are espe-
cially lacking. In the actuarial profession,
the search for a stochastic model for use
in cash flow testing is expected to con-
tinue for some time. Unlike the problem
of model selection for pricing financial as-

WThe recent survey by Velzal (1994) has
demonsirated the research interest shown in the
insurance literature. The fact that the second
edition of the well-known text book by Kelli-
son (1991) has a new chapter on “stochastic ap-
proaches to interest” is alse a testimony to the

growing importance of the topic,
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sets, the selection of an interest rate model
for the cash flow tesing of a block of insur-

ance producis is made difficult because of
the lack of an appropriate benchmark for
assessment. Nonetheless, much progress
has been made in understanding the lim-
ttations of the current methods that are
being practised.
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