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EXTENDED ABSTRACT 

Economic analysis of situations with strategic 
interaction is based on equilibrium concepts such 
as Nash Equilbrium and its refinements like 
Subgame Perfection for dynamic games, Bayesian 
Nash Equilibrium for games of incomplete 
information and Sequential Equilibrium for 
dynamic games of incomplete information. In 
reality (and in field and laboratory experiments) 
we regularly observe individuals deviating from 
equilibrium play. It is important to understand why 
individuals fail to play according to standard 
equilibrium predictions.  A better understanding of 
the reasons for deviations can help to develop new 
theories that better predict human behaviour. This 
is highly desirable if economics is viewed as a 
positive social science. A better understanding of 
human behaviour is also helpful for normative 
economics, as the desirability of policy measures 
depends on the predicted reactions of individuals.  

Behavioural economists have identified a variety 
of reasons why individuals fail to behave 
according to traditional equilibrium concepts. The 
main factors have been identified to be social 
preferences, biases in belief formation, deviations 
from expected utility maximisation, present biased 
preferences and bounded rationality. This paper is 
part of a larger research project, which aims to 
experimentally separate and quantify the 
contribution of bounded rationality to the 
occurrence of equilibrium deviation. The 
rationality concept underlying game theoretical 
equilibria is based on individuals iterating towards 
the equilibrium.  

For an individual to choose a strategy which is part 
of a Nash equilibrium this individual needs to be 
able to perform a certain number (depending on 
the nature of the game) iterations and also needs to 
know that the other players are able to perform the 
necessary number of steps.  In addition an 
individual player needs to know that the other 
players know about his ability to iterate, and so on. 
So rationality (here the ability to perform the 
necessary number of iteration steps) has to be 
common knowledge.  

A first step in understanding the impact of limited 
iteration ability on deviations from equilibrium 
play is to properly measure the number of steps 
individuals can commonly perform.  Earlier 
studies used interactive games (such as beauty 
contests, centipede games, the email game, or the 
dirty-faces game) to make inferences about the 
iteration ability of individuals. These approaches 
all have a severe disadvantage in common. As 
these games are interactive, observed behaviour 
cannot properly be attributed to a certain iteration 
depth, as the behaviour is not only dependent on 
the own iteration ability but also on the beliefs 
about the iteration ability of the other players. In 
other words: observing behaviour that deviates 
from equilibrium play can be the cause of either 
limited iteration ability, or the belief that the other 
players’ iteration ability is limited.  

We propose a novel design to separate the effect of 
limited iteration ability from that of strategic 
considerations stemming from the beliefs about the 
rationality of the others. We use a variant of the 
dirty-faces game (Littlewood, 1953) and 
implement it in the laboratory. The main 
innovation is the introduction of computer players, 
which always behave rationally. By informing the 
participants that the other players are rational 
computer players, which are not making any 
mistakes, we ensure common knowledge of 
rationality. Consequently, the failure to play 
according to the equilibrium prediction must be the 
result of limited iteration ability. We vary the 
parameters in the game within subjects, such that 
the number of iteration steps necessary to arrive at 
the equilibrium prediction varies from one to four. 
This enables us to find the number of iteration 
steps an individual is able to perform. 

Previous studies, where deviation from 
equilibrium is a confound of limited iteration 
ability and the lack of common knowledge of 
rationality, have found that the frequency of 
correct play drops drastically between one and two 
steps of iteration.  We find that removing the 
doubts about the rationality of the other increases 
the average iteration depth between two and three 
steps. 
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1. INTRODUCTION 

It has long been argued that real economic agents 
are not the flawless iterators we assume to inhabit 
the world described by economic theory. While the 
hyper-rationality assumption provides a useful 
benchmark and parsimoniously explains some 
actual behaviour observed in the real world, 
experimental economics has uncovered many 
cases where individuals systematically deviate 
from the predictions obtained from standard 
assumptions. 

One possible explanation for people's failure to 
play Nash is that they are not logically omniscient. 
Logical omniscience requires that an individual 
can deduct all logical consequences from her 
knowledge. We certainly cannot expect any human 
to possess logical omniscience. Let us consider a 
concrete example of the logical omniscience 
problem. Consider a mathematician, as an agent, 
who fully accepts the axioms of set theory. Now if 
set theory decides the Goldbach conjecture (every 
even number is the product of two primes), then 
the mere fact that the mathematician is assumed to 
be logically omniscient implies that she knows that 
Golbach's conjecture is actually not a conjecture 
but a theorem! Basically, the assumption of logical 
omniscience in traditional game theory implies that 
anyone who is told the axioms of set theory should 
be able to prove or disprove Goldbach’s 
conjecture.  

Another nice illustration of the burden that logical 
omniscience puts on the rationality of players is 
the game of chess. We know from Zermelo’s 
theorem that chess has a unique subgame perfect 
outcome (one of the players has a winning strategy 
or can at least force a draw). Logical omniscience 
implies that the player with the winning strategy 
(or the strategy that ensures a draw) should be able 
to realise this and play according to it.  If chess 
players were logically omniscient the game of 
chess would be boring, as we knew the strategies 
that will be played and therefore the result 
beforehand. But how can we expect a human to be 
able to perform a number of iterations not even the 
most powerful computers can perform. This is the 
sort of extreme view that motivates the relaxing of 
the logical omniscience assumption. 

Note that the failure to  adhere to a Nash 
equilibrium strategy is not necessarily the result of 
an individual’s inability to draw all correct 
inferences from their knowledge. Logical 
omniscience does not require that humans are 
selfish. As noted by many authors, some off-
equilibrium behaviour can be explained by 
individuals having social preferences, where not 

only their own payoff but also that of others 
influences individual's utility. Models of social 
preferences are centered around inequality 
aversion (e.g. Fehr and Schmidt, 1999, or Bolton 
and Ockenfels. 2000) and may additionally include 
tastes for social efficiency and for kindness (e.g. 
Charness and Rabin, 2002). Further deviations 
from the preferences economist usually assume 
that can be responsible for unexpected play are 
deviations from expected utility theory (see 
Starmer, 2000 for an overview) or from orthodox 
time preferences with exponential discounting (see 
Frederick et al., 2002 for a review of the 
literature). 

A third potential reason for the deviation from 
equilibrium play lies in how people form beliefs. 
By beliefs, we mean probabilistic beliefs - i.e., 
player i assigns probability pi(ω-i) to the realization 
of the state ω-i. In matrix games the beliefs refer to 
the probability assigned by a player to the other 
players choosing particular actions. In games with 
uncertainty beliefs also assign probabilities to 
possible states of the world, while in dynamic 
games updating of beliefs comes into play. 

Given that there are so many potential reasons why 
people choose actions in games that are not part of 
a Nash equilibrium (or one of its refinements and 
extensions), the task of explaining to which extent 
the potential reasons contribute to deviations in 
different settings becomes vitally important for the 
formulation of new and more accurate theories. 
This paper is part of a larger research program 
with this task in mind. As a first step we aim to 
measure the level of logical omniscience (or 
equivalently the number of iteration steps) in 
humans. Existing studies have tried to infer the 
iteration depth humans have by implementing 
dominance-solvable games in the laboratory. 
Dominance-solvable games are games where a 
finite number of iteration steps lead to the 
equilibrium strategy. These earlier studies have in 
common that the number of iteration steps 
performed by an individual is not readily 
observable. An observed deviation from 
equilibrium play can either be due to the inability 
to iterate or due to the belief that the other 
player(s) are not able to iterate deeply enough.  

To see this, consider the centipede game depicted 
in Figure 1, which is taken from McKelvey and 
Palfrey (1992). Centipede games are regularly 
used to make inferences about the iterative ability 
of individuals. The subgame perfect Nash 
equilibrium outcome is player one playing T (take) 
at the first node. The equilibrium actions at the 
other information sets are such that each player 
takes at any information set. A player can 
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determine this outcome by iteration from the back 
(backward induction). The reasoning goes like 
this: I know that player 2 will play T at the last 
node then it is better for player 1 taking at the 
penultimate node, which means that player 2 
should play T at the node before that, and so on. 

 

Figure 1: A centipede game 

Now one might use the node at which a player 
chooses T as a measure for the number of steps of 
iteration a player might be able to do. Playing T at 
the penultimate is equivalent to one step of 
iteration, playing T at the node before that to two 
steps, and so on. 

This reasoning is compelling but not strictly valid. 
Suppose a researcher observes player one playing 
P (pass) at the first node. Given the logic above we 
would conclude that this individual is not able to 
perform five steps of iteration. Unfortunately, this 
does not have to be true. We should observe the 
same behaviour if player one is able to perform 
five steps of iteration but beliefs that it is very 
likely that player two is not able to perform four 
steps of iteration. If player two is not able to 
perform four steps of iteration he might not play T 
at the next node. If player one considers this to be 
sufficiently likely it is best for her – even if she 
can do five steps of iteration – to play P at the first 
node and then to take at the third node if player 
two passes at the second node, which would give 
her a payoff of 1.60 compared to 0.4 if she takes 
immediately, what is prescribed by subgame 
perfection.  

Other studies using games with strategic 
interdependence suffer from the same problem: 
Deviation from Nash equilibrium can be a 
confound of limited iterative ability and strategic 
uncertainty stemming from a lack of common 
knowledge of rationality. These two effects cannot 
be cleanly separated. Examples are the dirty- faces 
game (Weber, 2001 and Bayer and Chan, 2007), 
centipede games (McKelvey and Palfrey, 1992 and 
Fey et al. 1996), beauty contests (first introduced 
by Nagel, 1995) and matrix games (Stahl and 
Wilson, 1994 and Costa-Gomez et al., 2001).  

In what follows we propose a novel experimental 
design that overcomes the problem of non-
separable effects. We use a modified version of the 
dirty-faces game with computerised players and 

implement it in the laboratory. A human player is 
paired with a number of logically omniscient 
computer players (i.e. the computer players are 
programmed such that they have an unlimited 
depth of iteration). The human is informed about 
playing with computers and about the computer’s 
ability to reason flawlessly. This procedure does 
not only overcome the separation problem 
described above but also rules out any social 
influence of social preferences, as the computers 
do not receive any payoff. 

We vary the parameter setting in the games within 
subjects such that one to four steps of iteration are 
necessary for the human to play the game 
according to the equilibrium prediction. With this 
design we are able to measure how many steps of 
iteration an individual can actually perform. We 
find that humans are able to perform more steps of 
iteration than conjectured using games with where 
uncertainty about the common knowledge prevails. 
This indicates that some deviations from 
equilibrium play that were commonly attributed to 
limited cognitive abilities are actually the 
consequence of the individual’s doubt about the 
cognitive ability of other players. 

 The remainder of this paper is organizes as 
follows. Section 2 describes the logic of the game 
used to experimentally measure the depth of 
iteration in humans. Section 3 presents the 
experimental design, while our main results are 
presented in Section 4. Section 5 concludes. 

2. THE RED-HAT PUZZLE 

The level of logical omniscience is positively 
related to the number of logical connectives a 
person can master. For this reason the 
measurement of the level of logical omniscience 
requires a variety of tasks, where the successful 
completion of a particular task can be related to the 
number of connectives. The tasks must be such 
that they have different difficulties - from easy 
(only few connectives are required) to very 
difficult (many connectives are required). 
Furthermore, the tasks should be similar; such that 
potential other factors (like framing) do not 
influence behaviour differently across tasks. 

For this reason we use a game, where a variation 
of the starting information requires a different 
number of logical iterations in order to find the 
correct answer. We use the so called “Red Hat 
Puzzle” (RHP), which is sometimes also referred 
to as the “Dirty-Faces Game”. This game has been 
used to investigate iteration depth in humans by 
Weber (2000) and Bayer and Chan (2007). We 
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follow the exposition of Fagin et al. (1995) in 
order to explain the puzzle.  

Consider N agents are playing together. Each of 
these agents has either a red hat or a white hat. The 
agent cannot see the colour of their own hat but 
sees the colour of the hat the other players are 
wearing. Suppose that some of the agents, say n, 
have red hats. Along comes a referee, who says 
that “at least, one of you has a red hat on his head”. 
Then he asks the following question: “Does any of 
you know whether you have a red hat on your 
head?” As long as some people answer “No, I 
don’t know” the referee keeps repeating his 
question. Which kind of reasoning does this trigger 
in the mind of logically omniscient agents? 

We can prove that the first n-1 times the referee 
asks the question, logically omniscient agents 
answer ”No”, but then the nth time, agents with red 
hats will all answer “Yes”. The proof is by 
induction on n. For n=1, the one with a red hat 
sees that no one else has a red hat. Since he knows 
(it is common knowledge) that there is at least one 
red hat, he concludes that he must be the one. Here 
just one step of reasoning is required. 

Now suppose n=2. So there are just two players 
with a red hat, say players 1 and 2. Each of them 
answers “No” the first time they are asked because 
they both see the red hat of the other player, which 
prevents them from knowing their own hat colour. 
But the moment 2 says “No”, 1 realises that he 
must have a red hat herself. The mere fact that 2 
could not establish his hat colour before means 
that he must have seen a red hat, which 1 now 
knows to be on her head. Thus 1 answers “Yes, it 
is red” the second time the referee asks. The same 
reasoning applies to 2, who will also answer “Yes” 
when asked the second time. For these two players 
two steps of iterated reasoning are necessary to 
determine their hat colour. 

The remaining players if logically omniscient will 
be able to determine that their hats are white after 
observing the first two players announcing that 
their hat colour is red in round two. They can 
recover the reasoning of players 1 and 2 and in a 
third step of iteration and conclude that players one 
and two must have seen a white hat on their heads. 

Now suppose that n=3 – there are three players,   
1, 2, and 3 – with a red hat. Player 1 thinks as 
follows. Assume I do have a white hat. Then by 
the case of n=2, both 2 and 3 should answer “Yes, 
it's red” the second time. When they do not, 1 
realises that his assumption was false and 
concludes that he has a red hat. He will answer 
“Yes, it's red” to the third question. The same logic 

applies to players 2 and 3. They all need three 
steps of iteration to determine their hat colour. The 
remaining players can then conclude in round four 
that their hats are white, as otherwise the three 
others could not have found out that their hat 
colour was red. For this they need to be able to 
perform four steps of iteration. The general 
argument for n>3 proceeds along the same lines. 

What is the role of the referee's public 
announcement? One might wonder why this 
announcement is informative. After all, each 
player initially knows that at least one hat is red 
when n>1. Thus, one might conjecture that this 
announcement is useless, but this is false!!!  This 
announcement provides common knowledge and 
starts the chain of reasoning as it determines that 
someone can say I have a red hat if n=1. Observe 
that here common knowledge is required. The 
mutual knowledge in the cases n>1 is not enough. 

We implement this game in the laboratory and pair 
a human player with three computers. Given the 
discussion above, it is very important to ensure 
that subjects have common knowledge with 
respect to the fact that there is at least one red hat 
if one wants to measure the level of logical 
omniscience. We ensure this by stressing this point 
in the experimental instructions and asking control 
questions to test if the subjects understand this 
important fact. 

There is a second kind of common knowledge 
necessary in order to cleanly measure the level of 
logical omniscience. Suppose a logically 
omniscient player does not know with certainty 
that all the other players are also logically 
omniscient. Suppose we have n=2 and all players 
have answered “No” in the first round of 
questions. Then a player who sees one other red 
hat can conclude that he must have a red hat if and 
only if he knows that the player with the red hat he 
sees has answered correctly in the first round. If he 
has doubts about the cognitive ability of the other 
player he cannot draw this conclusion with 
certainty. So then this player will answer with 
“No”. Consequently, a design that does not ensure 
that a player is absolutely certain that the other 
players are logically omniscient does not measure 
logical omniscience but a combination of logical 
omniscience and the beliefs of a player about the 
level of logical omniscience of the others. Then 
these two effects cannot be cleanly separated. 
Previous studies using this game (Weber, 2001 and 
Bayer and Chan, 2007) suffer from this problem. 

We therefore introduced logically omniscient 
computer players. Providing subjects with the 
information what they see (the hat colours of the 
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other three players, the computers) one of the 
answers “I can infer that I have a red hat”, “I can’t 
possibly know” “I can infer that I have a white 
hat” is logically correct in the first round. 
Informing the subjects that a computer always 
chooses the logically correct answers then ensures 
that the subjects understand that the computer is 
logically omniscient. The same is true for the 
second (and subsequent) rounds of questions. 
Then, once the answers of the four players (one 
human and three computers) are made common 
knowledge, there is again one logically correct 
answer. The subjects were informed that the 
computers choose the logically correct answer at 
any stage.  

Note that a mistake of the human player in one 
round leads to inconsistencies with the computer 
players. Then a computer player might infer the 
wrong hat colour. In order to prevent subjects from 
observing such a situation we end a puzzle 
immediately once the human player has made a 
mistake. We also end the puzzle once all players 
(computers and humans) have correctly inferred 
their hat colour. 

3. EXPERIMENTAL PROCEDURE 

In a four player version of the Red-Hat Puzzle 
(RHP thereafter) there are seven logically different 
situations. The situations differ by the number of 
red hats a subject sees and whether she has a red or 
white hat. So there are two situations where the 
subject sees three red hats (one where she has a 
white hat herself and one where she has a red hat). 
There are also two situations each where the 
subject sees one or two red hats. In the case where 
the subject does not see any red hats there is only 
one situation, as the announcement “There is at 
least one red hat” requires the subject to have a red 
hat. 

The difficulty is determined by the number of red 
hats an individual sees. If we denote the number of 
red hats seen as r then a subject needs r+1 steps of 
iteration to correctly determine the hat colour. In 
our treatment the subjects played all seven RHPs. 
The puzzles where ordered by difficulty. So 
individuals played the easiest puzzle (r=0) first 
and the two hardest puzzles (r=3) last. In between 
puzzles subjects were given no feedback. So they 
were not told if they had solved the previous RHP 
correctly.  This prevents the subjects from learning 
in between puzzles. 

The puzzles were programmed in z-tree 
(Fischbacher, 2007). Before the actual puzzles 
were started subjects had to answer some control 
questions in order to ensure that they understood 

the instructions, the screen layout and that “there is 
at least one red hat”.  Instructions and treatments 
can be obtained from the authors upon request. 

In order to provide strong incentives payment was 
organised as follows.  Subjects started with a 
show-up fee of AUD 17.50. Then for each mistake 
AUD 2.50 were deducted. Assuming that subjects 
are loss-averse this setup provides very strong 
incentives. It took the subjects about an hour to 
play the seven situations. We conducted five 
sessions with a total of 94 subjects. 

The subjects were mostly students at Adelaide 
University. Their background varied widely. The 
degrees these students were enrolled in covered 
almost the whole spectrum. The years of university 
education also varied greatly among subjects (from 
first-year students to PhD students).  

4. RESULTS 

We now present our main results. We estimate a 
panel probit model with random effects, where the 
correct solution of a RHP is the dependent 
variable. The average marginal effects of the 
independent variables are summarized in Table 1 
below.  

We observe a very high correlation within a 
subject (rho=0.45), which shows that the different 
individuals were differently successful with the 
RHPs  and that the success across situations within 
a subject is consistent.  Another result that 
validates our results is that all subjects got the 
situation with one step right. So the way we 
induced common knowledge about the fact there is 
at least one red hat must have worked. 

We further observe that between two and three 
steps of iteration occurs a break. While a puzzle 
with two steps was 33 percentage point less likely 
to be solved than the puzzle with one step, both 
three and four step puzzles both were 57 
percentage points less likely to be solved correctly 
than the one-step puzzle. So people that are able to 
solve the puzzle with three steps are also able to 
solve the puzzle with four steps.  We conjecture 
that people that manage to do three steps of 
iteration are able to use induction and therefore 
have understood the pattern of correct answers. 

We controlled for the courses the students were 
enrolled in. The only difference to the reference 
group (Economics students) were students from 
the Medical School. They were on average much 
more likely to solve a puzzle, which is not a 
surprise, as the entry requirements are among the 
highest there.  
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.Table 1: Marginal effects of a panel probit model 

Independent Variable Marginal 
Effect 

Difficulty dummies (one step is the reference  

2 Steps -0.33** 

(0.00) 

3 Steps -0.57** 

(0.00) 

4 Steps -0.57** 

(0.00) 

Course dummies (Economics is the reference 
group) 

Medicine 0.48** 

(0.00) 

All others not significant 

Socioeconomic Background 

Higher Maths 0.18** 

(0.04) 

Male 0.18** 

(0.01) 

Age dummies Not sign. 

Control questions and decision times 

Control questions correct 0.22** 

(0.01) 

Time taken for first decision 
(in 10 sec) 

0.00 

(0.38) 

Time taken for critical 
decision (in 10 sec) 

0.06** 

(0.03) 

P-Values in parentheses, ** sign. 5%-level  

Also not surprising is the finding that students who 
studied advanced maths in high school were more 
successful at solving the puzzles.  More puzzling is 

the finding that males were better at solving the 
puzzles than females. 

Subjects who were able to answer the control 
questions correctly on average had a much higher 
chance of solving a puzzle than those who failed 
answering them correctly.  A very interesting 
result has to do with decision times. We see that 
the decision time at the first question “What’s the 
colour of you hat?” does not predict wether a 
subject solves a puzzle correctly or not. However, 
the decision time at the question which is critical, 
i.e. when subjects have to switch from “I don’t 
know” to “red” or “white”, has an influence. 
Subjects who thought harder and took more time at 
this crucial decision were more likely to answer 
correctly. One additional minute of thinking 
increased the probability of being correct by 36 
percentage points. 

We also created a measure for logical omniscience. 
The measure provides the number of steps an 
individual is able to perform. We use the number 
of correct solutions in the seven puzzles and then 
assign the number of steps an individual was able 
to perform. For example a person who got all 
seven RHPs right will have an LO score of 4 as 
this individual solved all puzzles including the 
ones where four steps of iteration were required. 
An individual with three correct answers will be 
assigned an LO score of 2, as this person was able 
to solve the three easiest puzzles up to an iteration 
level of two.  

There are two things worth noting here. This LO 
score assumes that people’s behaviour conforms to 
a perfect Guttmann scale, which means that the 
performance is weakly decreasing in the difficulty. 
However, perfect Guttmann scales are hardly ever 
observed in the real world. Our scale is not perfect 
either. However, more than 80 percent of our 
subjects showed monotonous answering patters, 
which is quite a good level of consistency.  

Additionally, for iteration levels two, three and 
four there were two situations each. The logic in 
the two puzzles with the same iteration level is 
slightly different. In one case subjects had to infer 
from the computers not determining their hat 
colours yet that their hat colour must be red, while 
in the other problem they had to infer that their hat 
colour must be white, as the computers have found 
out that their hat colour is red. For this reason our 
measure allows for half steps. Figure 2 shows the 
distribution of the LO scores.  
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Figure 2: Distribution of LO scores 

The median LO score is 2 (mean 2.27). In studies, 
where doubts about the rationality of the other 
players were also a factor, subjects usually behave 
on average as if their iteration ability was between 
one and two. So around half of an iteration step 
was lost in these studies due to subjects not relying 
on the rationality of the other players. The 
distribution of LO scores shows that surprisingly 
many subjects were actually able to iterate with 
depth three or four.  

5. CONCLUSION 

In this paper we present a novel experimental 
design, which for the first time allows the 
measurement of iteration depth in humans without 
further assumptions about the beliefs individuals 
have about the rationality of other players. We find 
that the actual iteration depth is about half a step 
higher than measured by studies which did not 
control for the beliefs about the rationality of other 
players. We also find that individuals who are able 
to perform three steps of iteration are quite likely 
to go all the way and are able to perform four steps 
as well. One, two, three, epiphany.  
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