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EXTENDED  ABSTRACT

Long memory processes are an important 
aspect of current time series modelling. They 
are needed in cases where the series lies 
between non-stationary ARIMA processes and 
nearly non-stationary ARMA processes. In 
other words, integration is allowed to be 
fractional. Long memory processes show that a 
time series value at any time has significant 
dependency on the entire past.  
 
On the other hand, processes with structural 
breaks, or more precisely stochastic regime 
switching, implies changes in the object 
identity. Structural changes could occur when 
some parts of series have changing behaviours.  

It is known that series with structural breaks 
could be identified as a spurious long memory 
process time series. The reverse, that a pure 
long memory process could appear to have 
structural changes, is also possible. It is 
therefore important to be able to differentiate 
between a true long memory process and a 
series with structural breaks. . However, the 
distinction between them is difficult as they 
share many common analytical features. Our 
work is in developing tests to enable the 
distinction between pure long memory 
processes and time series with structural breaks 
to be made. 

In term of the theory of time series, a long 
memory process comes from a stable data 
generating mechanism over the whole length 
of the series, whereas series with structural 
changes does not. 

Several techniques have been developed for 
detecting structural breaks and have shown 
various strengths and weaknesses. We have 

used Atheoretical Regression Tree (ART) in 
our study. ART is a non-parametric approach 
which recursively partitions a series into 
mutually exclusive and exhaustive sub-series 
by binary tree splits. The advantages of ART 
are that it is computationally fast, can be 
visualised as a tree diagram, and its 
performance is not dependent on the length of 
the series. 

Our results from simulations of a typical long 
memory process shows that the number of 
breaks identified by ART appears to follow a 
Poisson process. This could guide the analyst 
in whether they are dealing with a pure long 
memory process, or a series with structural 
breaks. It our results are sound it would be 
possible to at least identify a structural break 
model when the number of breaks is more than 
that would be expected for a pure long memory 
process. 

We have applied ART to two classic time 
series identified as long memory series. One 
series showed that, if the number of breaks is 
Poisson distributed, number of breaks detected 
by ART was close to the expected number of 
breaks. It suggested the series was likely to a 
pure long memory series. However, the other 
series had more breaks than what was 
expected. Then, it is possible this is a series 
with structural breaks rather than a pure long 
memory process. 

Our work provides encouraging results on how 
ART can distinguish a pure long memory 
process from a process with structural breaks 
by using the expected distribution of break 
points. Further theoretical investigation to 
confirm the distribution is Poisson, is required. 
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1. Introduction 
 
The long memory processes in time series, also 
called long range dependency, strong 
dependence or Hurst phenomenon, was 
popularized by Hurst (1951), and Mandelbrot 
and Van Ness(1968). It has been applied in 
many areas, such as finance (Granger and 
Hyung, 2005), network communications 
(Leland et al, 1993), hydrology (Klemes, 
1974), geophysics (Maraun et al, 2004) and 
climatology (Mills, 2006).  
 
In general, long memory processes exhibit the 
behavior of a data process after a given time t 
but not only depend on the circumstance at 
time t, but also on the entire history of the 
process up to t. This process can be described 
in the time domain as 
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where ρ is the autocorrelation function, 

j is the lag. The sum of the 

autocorrelation is not finite. In the 
frequency domain: 
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where )(ωf is the spectral density, ω  is 

the power, fC  is a constant and 

( )1,0∈γ . The spectral density tends to 

be infinite at low frequency or the origin. 
 
Recently, many authors (Ohanissian et al, 
2005; Diebold and Inoue, 2001; Granger and 
Hyung, 2004) have shown that differentiation 
between true long memory processes and 
spurious long memory processes is hard to 
define. The reason is both processes share 
similar properties.  
 
Spurious long memory processes are series 
with multiple change/breaks points. That is a 
non-stationary process which possibly 
combines several short memory processes, 
such as ARMA, with probabilistic shifts or 
breaks. Therefore, we are aware of spurious 
long memory that does not come from a 
constant data generating process.  
 
On the other side, true long memory processes 
always derive from the same data generating 
mechanism. Then, they will have identical 
processes at any given size of sampling 
(Mandelbrot, 1997).  
 
Even though we are clear as to both data 
generating mechanisms, classification rules are 

rather unclear. Detection techniques of 
change/breaks points are the key. In this survey 
Atheoretical Regression Tree (ART) (Cappelli 
and Reale, 2005) was only considered as it is 
computationally inexpensive and easy to 
manipulate. Then, distributional properties of 
break points in true long memory processes 
could allow us to differentiate between a true 
long memory process and a process with break 
points. 
 
This paper is organized as follows: The next 
section discusses the simulation models used 
to create a true long memory process and the 
spurious long memory process that can arise 
with structural breaks; Section 3 covers the 
process of detecting structural breaks in the 
simulated series. In the following section we 
present the empirical results of statistical 
properties in break points; Two case studies 
are explained in section 5; Section 6 provides 
conclusion 
 
2 True and Spurious long memory models 
 
2.1 True long memory models 
 
The most common model for a true long 
memory processes is an Auto-Regressive 
Fractionally Integrated Moving Average 
(ARFIMA), 

tt
d BB εθχφ )()( =∆ , 

As in ARIMA models where( )tε  is White 

Noise with zero mean, and dd B)1( −=∆ , 

where ( )5.0,0∈d  , is a difference operator, B 

is a backward operator, )(Bφ  are AR 

parameters, and )(Bθ  are MA parameters. 

 
The simplest ARFIMA model, ARFIMA 
(0,d,0) is termed the Fractional Gaussian Noise 
(FGN) , 

tt
d εχ =∆  

In discussions of long memory processes, the 
Hurst parameter, H, is used as a measure of 
self-similarity (Hurst, 1951). The higher the 
value of the Hurst parameter, the more 
fluctuations the series has. This model we use 
for our simulation. 
 
That is, the FGN model is 

tt

H
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Some examples of FGN are given in Figure 1. 
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Figure 1. Plots of simulated FGN series.  
 
2.2 Spurious long memory models 
 
It has been shown Markov/Regime switching 
can appear to be long memory models 
(Ohanissian et al, 2005; Granger and 
Terasvirta, 1999). 
 
This model contains sub-time series, stationary 
ARMA models processes, with probabilistic 
changes on state levels. Its formulation was 
presented by Chen and Tiao(1990) is as 
follows. 
 
(1) 

ttt xy += µ   

(2) 1−+= tttt p µηµ  

 
where ( )0, ≥txt

 is local-stationary ARMA 

model,( ) ( )2,00, σµ cNtt ∈> , and tp  is 

binary variable with Prob( ) α== 1tp  and 

Prob(( ) α−== 10tp . 

 
The mean levels change over time according to 

the probability of tp . During the changes or 

breaks, the series are stationary and have 
different statistical properties. An example of a 
series from this model is given in Figure 2. 

 
Figure 2: Time series with a single break at t=300. 

3 Overview of detection procedures 
 
When detecting change points there are several 
issues to consider: 
1. Expected number of breaks known; 
2. Length of the series; 
3. The sensitivity of the break detection (i.e. 

false positives and false negatives); 
4. Computational efficiency of the detection 

process. 
 
This section concentrates on how several 
detection techniques predict when breaks occur 
given break dates are unknown and why ART 
is used. 
  
A common way to detect break points was 
developed by Bai and Perron (1998, 2003). 
This utilizes dynamic programming and 
Fisher’s exact optimization. Each serial point 
is allocated into mutually exclusive and 
exhaustive sub-groups which maximize the 
sum of squared errors between groups or 
minimize the sum of squared errors within 
groups. The advantage of this procedure is that 
it is able to find the global minimum. 
However, it is computational intensive when 
series are long (e.g > 1,000 points). 
 
In our simulations we will use a different 
procedure, ART. This is a non-parametric 
approach, and produces hierarchical tree 
structures with break dates (Cappelli and 
Reale, 2003). It makes use of a binary division 
algorithm with concept of Fishers’ contiguous 
partitions (1958) and Least Square Regression 
Tree (LSRT) splitting criterion (Breiman et al, 
1984). Under this, groups are separated as far 
as possible.  
 
ART has three advantages over Bai and 
Perron’s procedure: 
1. It is computationally considerably faster; 
2. One can visualize the results as a tree 

diagram; 
3. It can detect breaks in any length series 
 
The drawbacks are that optimal breaks may not 
be found though it is expected to be close to 
optimal; and the number of break points are 
overestimated in short series. 
 
Overall, ART has many nice features and 
comparable results to Bai and Perron’s 
procedure. Detailed comparison is studied by 
Rea et al (2007). 

 
4 Simulations and Empirical results 
 
4.1 Simulations 
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For the generation of true long memory series 
and tree construction, fSeries and tree, add-in 
package for R, were used. 
 
The simulation process was: 
(1) A Hurst parameter was selected (H=0.95, 

0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6 and 
0.55); 

(2) 1,000 series of length 5405 were 
generated for each value of H (Reasons to 
5405 are simply because it is reasonably 
long and  also same length as one of our 
examples); 

(3) Each of the 1,000 series for each value of 
H were broken into sub-groups or 
regimes, and the results of number of 
breaks for each of these 1,000 series were 
examined. 

 
4.2 Results 
 
In this section, empirical distributions of 
statistics were examined by different 
theoretical density functions. The best fitted 
ones were employed to determine statistical 
properties on sub-series or regimes. The 
statistics we were interested in: 

1. Number of breaks. 
2. Regime length. 
3. Mean level of series in breaks. 
4. Standard deviation of series in 

breaks. 
 
4.2.1 Number of breaks 
 
The number of breaks is an integer, thus their 
distribution would be expected to be a discrete 
distribution. The frequency distributions are 
plotted in Figure 3. The fitted Poisson has been 
plotted, as well as the Normal distribution for 
comparison.  
 

 
Figure 3: Empirical distribution of the number of breaks 
with Hurst parameters. Normal (solid, red), Poisson (dash, 

blue) 
 
H value Expected 

number of 
breaks 

Chi-square 
test. P-
value (df) 

0.95 8.29 0.185 (14) 
0.9 6.82 0.155 (12) 
0.85 5.01 0.110 (9) 
0.8 3.19 0.078 (7) 
0.75 1.76 0.001 (4) 
0.7 0.75 0.000 (3) 
0.65 0.15 0.000 (1) 
0.6 0.0015 0.000 (0) 
0.55 0 0.000 (0) 
Table 1: Expected number of breaks and Chi-square test 
statistics on Poisson distribution in FGNs. 
 
Empirically it appears that the number of 
breaks for a long memory process possibly 
comes from a Poisson distribution for H ≥  
0.8. As H tends to 0.5, the number of breaks 
tends to zero (Table 1). That implies that the 
FGN processes became “stationary” as no 
breaks were detected. We also have compared 
the expected number of breaks if they were 
Poisson distributed with what we obtained 
from our simulation with a Chi-square test. 
There is no evidence that the distribution is not 
Poisson..  
 
 
4.2.2 Regime length 
 
The distribution of original regime length is 
highly right-skewed and a natural logarithm 
transformation was used (figure 4).  
 

 
Figure 4: Empirical distributions of log regime length. 
Gamma (solid,red) and Normal (dash,blue) 
 
After log-transformation, the distribution is 
less skewed, and it is quite symmetric 
at 19.0 <≤ H . Gamma and Normal distribution 
were used. The Gamma distribution looks like 
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the better one to capture the changes in the 
empirical distribution. However, distribution 
was atypical at small H value ( 8.05.0 <≤ H ). 
 
The expected value of the regime length 
became larger and larger as H became smaller 
and smaller. This is consistent with the 
findings of the previous results as the number 
of breaks tends to zero. At 65.05.0 ≤≤ H , the 
regime length was very likely to be equal to 
the length of the series (table 2). 

 
H value Expectation of 

log regime 
length 

Expectation of 
regime length 

0.95 6.46  637.61 
0.9 6.65  771.26 
0.85 6.95  1042.03 
0.8 7.37  1584.58 
0.75 7.81  2470.29 
0.7 8.23  3763.93 
0.65 8.52  5004 
0.6 8.59  5388.83 
0.55 8.6  5405 
Table 2: Expectations of log regime length and original 
regime length in FGNs. 
 
4.2.3 Mean levels of series in breaks 
 
Differently from the previous two statistics, the 
empirical distribution of the mean always 
appears symmetric. The centre was zero, and 
the sample standard deviation became smaller 
as H moved from 0.95 to 0.55. The Logistic 
distribution was used as well. The distribution 
looks like either Normal or Logistic 
distribution. 

 
Figure 5: Empirical distributions of mean. Normal 
(solid,red) and Logistic (dash,blue) 
 
4.2.4 Standard deviations of series in breaks 
 
In term of the standard deviation, the empirical 
distribution showed symmetry through all H 

values. Its centre shifts from 0.8 to 1, and the 
density of point at 1 becomes larger and larger 
as H becomes smaller. In other words, the 
standard deviation is more stable where H is 
small. When H=0.55, the standard deviation 
was 1. Additionally, densities along the two-
sides decayed very quickly. 
 
Because of these features, Logistic and normal 
distribution worked well where 18.0 <≤ H . 
The Logistic just did a little better than the 
Normal for this case.  

 
Figure 6: Empirical distributions of standard deviation. 
Normal (Solid,red) and Logistic (Dash,blue) 
 
4.3 Review 
 
In this section, empirical results provide a 
good starting point to identify distributions of 
statistics. Further theoretical investigation is 
necessary in our future work. 
 
5. Case studies 
 
For our simulations it appears that for a pure 
long memory process it is possible to predict 
what would be expected results if one 
investigated them for structural breaks. This 
leads us to believe that it should be possible to 
differentiate between a pure long memory 
process and a series with structural breaks. For 
this work we have examined two classic long 
time series, Nile Minima and Campito 
Mountain. The background information 
regarding to data was provided in Rea et al 
(2006).  
 
5.1 Nile river Minima  
 
This data recorded the yearly minimum water 
level in Nile River from 662 to 1284 AD 
(Figure 9). The estimated Hurst parameter for 
the Nile Minima was estimated 0.837 as by the 
Whittle estimator in fseries. ART returned 10 
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breaks i.e. 11 regimes in this dataset. The 
expected number of breaks in the simulated 
series for the corresponding H is 11.18. The 
probability of having 10 breaks is 11.7 percent 
which was almost the highest through all the 
densities (Figure 7). Hence, this can be 
considered a long memory process. 
 

 
Figure 7: Empirical distribution of number of breaks in 
Nile yearly minimum water levels 662 to 1284AD. 
 
5.2 Campito Mountain 
 
This data contains 5405 yearly records (3435 
BC to 1969 AD) on Tree ring width in Campito 
Mountain in US (Figure 10). The Whittle 
estimator returned 0.876 as the estimated value 
of Hurst parameter. ART detected the whole 
series with 12 structural breaks, i.e. 13 
regimes. From our simulation, the expected 
number of breaks for the corresponding H is 
5.97. Unlikely to the previous case (Nile river 
minima), the chance of having 12 breaks was 
very rare, only 1 percent (Figure 8). Therefore, 
this series cannot be considered as a long 
memory process. 
 

 
Figure 8: Empirical distribution of number of breaks in 
tree ring width in Capito Mountain 3435BC to 1969AD. 
 
The Campito Mountain data is considered a 
textbook example of a FGN process. However 
the result based on our simulation suggests the 
series contains structural breaks. This supports 
the results of Rea et al(2006). 
 
6. Conclusion  
 
In this study, we have proposed a data driven 
parametric procedure, ART, to distinguish 
between long memory model and regime 
switching. The simulations have shown 
distributional properties on different statistics. 
Therefore, the results are promising: 
 

1. We have examined a pure long 
memory process and shown the 

expected number of (false) breaks 
that would be identified with their 
average length; 

2. Nile Minima exhibits long memory 
behavior. However Campito 
mountain does not; 

3. Distributions, such as number of 
breaks and length of regime, are 
easy to be recognized for value of 
Hurst parameter is greater than or 
equal to 0.8. It also appears that 
distribution of number of breaks is 
approximately Poisson distributed. It 
also implies distributions are 
difficult to determine if Hurst is less 
than 0.8. Whereas, it would be 
unlikely to encounter a series with 
Hurst less than 0.8 in practice; 

 
It is clear that the value of the Hurst parameter 
affects expected distributions. Also, there will 
be differences given the length of the series. 
We intend to investigate these issues as well as 
develop theory to support our empirical results.  
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Figure 10: Time series of tree ring width in Campito 
mountain and its ART. 

 

Figure 9: Time series of yearly minimum water levels 
in Nile river and its ART. 
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