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EXTENDED ABSTRACT 

Consider a scalar AR(1) process ttt xx εβ += −1 , 
where }{ tε are iid disturbances. When 1±=β , the 
series is said to possess a unit root. Tests for the 
existence of unit roots in economic time series 
have been one of the main issues of interest in 
econometrics since the middle of 1980’s. In 
practice, econometricians focus on testing the null 
hypothesis of 1=β against the alternative of 

1|| <β since the explosive case 1|| >β and negative 
unit root 1−=β are very unlikely in economic 
series. 

The most standard unit root testing procedures 
must be Dicky-Fuller tests (DF tests hereafter) and 
its variants. We estimate β by the OLS and 
construct test statistics by suitably normalizing it. 
It is well known, however, that the DF test 
statistics do not have a good power property for 
small and medium sample sizes. Also, the limiting 
distribution is non-standard because the OLS 
estimator ofβ is not normally distributed, which is 
inconvenient in practice. 

Lai and Siegmund (1983) (LS hereafter) and 
Shiryaev and Spokoiny (1997) respectively show 
that the OLS estimator of AR(1) coefficient, β̂ , is 
asymptotically normally distributed even if the 
true value of β equals to unity and it is greater than 
unity in fact under a sequential sampling scheme. 
This sequential procedure involves a stopping rule 
such that one stops sampling at time cT  if the 

generalized information ∑= −
−≡ c

c

T

t tT xI
1

2
1

2σ , or its 

estimate in practice, exceeds a predetermined 
constant c .  

The asymptotic normality of sequential OLS 
estimator implies that one can construct a test 
statistic for the unit root possessing a standard 
normal limit. It is obviously practically convenient 

compared with DF tests having non-normal 
limiting distribution.  

In this sampling scheme, the number of 
observations cT is also a random variable 
depending on the realization of the time series 
unlike the standard sampling case. We may like to 
know the statistical properties of the stopping time 
because it will be of some help to determine an 
appropriate value of c , and also because it may 
provide certain amount of additional information 
in unit root testing to that from β̂ . In this paper, we 
derive the joint asymptotic distribution of β̂  and 
the stopping time suitably normalized. The 
marginal distribution of β̂ is, of course, normal, 
while cTc / is shown to have a non-standard 
distribution characterized by a functional of the 
Bessel process with the dimension 3/2 under the 
null. We also obtain the joint distribution under 
local alternatives where the marginal distribution 
of the stopping time is represented in terms of a 
Bessel process with drift. Using these asymptotic 
joint distributions, we can construct a likelihood 
ratio type test statistic for unit root. We find that 
the statistic does not depend on the stopping time, 
and thus the stopping time carries no additional 
information to the OLS estimate of the AR(1) 
coefficient in terms of testing for unit root.  

The following section reviews DF test and 
sequential AR(1) parameter estimation, as well as 
the sequential unit root test based on LS including 
some simulation results. Section 2 presents the 
joint distribution of β̂  and cT under the null, while 
Section 3 provides that under a local alternative. 
Section 4 explains likelihood ratio type statistic 
and the sequential unit root test as well as the LAN 
property under the normal disturbances. Section 5 
concludes. 
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1. INTRODUCTION 

1.1. Dicky-Fuller Test 

Suppose }{ ix is generated from 

ttt xx εβ += −1 ,                                            (1) 

where }{ tε are iid disturbances. When 1=β , the 
process is called a unit root process and its 
behaviour is very different from ones with 

1|| <β . Some macroeconomic time series are 
said to have a unit root based on the results from 
DF test. We first briefly review the DF t-statistic. 
Given a sample },,{ 1 Txx L , let the OLS 

estimator of β  and an estimator of 2σ  be 
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Also denote )(sW  as a standard Brownian motion. 
Then, as ,∞→T  we have the following 
asymptotic results: 
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Therefore to test the null of unit root against the 
alternative of stationarity, we use the t value 

}ˆ/{)1ˆ(
1

2
1∑

=
−−

T

i
iTT xσβ which converges to a 

functional of W(s) above under the null, while it 

explodes under the alternative. Table 1 shows the 

size and power of the test by simulation. The size 
seems to be acceptable, but the power is 
unsatisfactory for sample sizes for T=50~150.  

1.2. Sequential Estimation of AR(1) 
Parameter And the Stopping Rule 

Sequential analysis was originally considered by 
Wald (1947). The idea is as follows. Suppose we 
can obtain one observation a day, say. We sample 
every day and when we accumulate “sufficient”' 
information, then we stop sampling and make a 
statistical decision (estimation or testing). How 
“sufficient”' is determined by the researchers 
through some user-determined parameter c, which 
controls the accuracy of the results. How we stop 
sampling is called the stopping rule and the time 
when we stop sampling is called the stopping time. 
Typically, we are better off if we can obtain 
conclusions earlier due to some cost of sampling 
or taking time. There exists a trade-off between 
accuracy and cost of sampling. 

LS investigate the statistical properties of the 
sequential estimator of the AR(1) parameter in 
model (1). Formally, for a predetermined constant 
c, their stopping rule is defined as 
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We stop sampling when the estimated information 
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predetermined value c, which controls the 
accuracy of estimation through the “sample size” 

cT . We write the stopping time as cT to 
emphasize that it depends on the choice of c . 
c controls for the accuracy of the estimation in the 
sense that the variance of the estimator, 1−

cTI , is 

guaranteed to be smaller than 1−c . There exists a 
trade-off between the accuracy of estimation and 
the cost of observations. If we set c large, cT will 
tend to be also large by construction, which will 
yield a more accurate estimate. If we set c small, 

Table 1. Rejection rate of DF t test (nominal 
size=5%). 

 Beta=1.0 
(size) 

Beta=0.95 
(power) 

T=50 0.0453 0.1296 

T=100 0.0460 0.3103 

T=150 0.0473 0.5580 
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sampling will stop relatively earlier, but the 
accuracy will be lower. Note that cT itself is a 
statistic depending on the observations. 

Using this stopping time, we calculate sequential 
estimators by 
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LS prove the asymptotic normality of
cTβ̂ in the 

case of 1|| ≤β : 

      )1,0()ˆ( NI d
TT cc

→− ββ . 

Further, Shiryaev and Spokoiny (1997) obtain the 
same result in the explosive case of 1|| >β under 
the assumption of normal disturbances. We can 
directly apply this result for unit root test which we 
call a sequential unit root test (SURT). 

Table 2.  Properties of SURT (size=5%) 

 

 

 

 

 

 

 

 

Table 2 
shows 

Monte Carlo results of SURT for c=600 and 2500. 
c controls for the accuracy of inference through the 
stopping time. We set c=600 so that the average 
stopping time under the null is about 50, while 
c=2500 yields the average stopping time of 100 
under the null. We will show a theoretical 
relationship between c and the average stopping 
time (sample size) later. Comparing the size results 

in Table 2 with those in Table 1, they are mostly 
satisfactory. In comparing the power, we need to 
be careful. The SURT procedure requires more 
sample sizes to stop sampling under the alternative, 
thus we cannot directly compare them with figures 
under the null. One point we can make is that DF 
test under the standard (fixed) sampling, we cannot 
conclude a unit root exists even if the null is not 
rejected from a sample of small or medium size 
(though it seems to prevail in economic literature). 
Under sequential sampling, however, researchers 
will be automatically forced to wait until a 
“sufficient” amount of information is accumulated 
both under the null and alternative hypotheses. The 
choice of c obviously becomes an important factor 
there. To choose c suitably, we need to study the 
statistical properties of cT which also determines 
the power of the SURT procedure. 

We lastly show the distribution of the stopping 
time from a Monte Carlo simulation. Figure 1 
shows the density functions of cTc / for 

cd /1−=β with 1,0=d when 810=c . 
0=d and 1 respectively correspond to the cases 

of unit root and stationarity. The distributions are 
clearly quite different each other and the stationary 
case requires more sample size (or information) in 
making a statistical decision. 

Figure 1.  Densities of stopping time under the 
null (d=0) and the alternative (d=1) 

 

2. JOINT DISTRIBUTION OF AR(1) 
PARAMETER ESTIMATOR AND THE 
STOPPING TIME UNDER THE NULL 

The following theorem presents the joint 
distribution of  

cTβ̂  and cT under the null.  

THEOREM 1. 

Suppose L,2,1},{ =iiε is a stationary and 
ergodic martingale difference sequence with 

c=600 Beta=1.0 
(size) 

Beta=0.95 
(power) 

Rejection rate 0.0503 0.3376 

E(Tc) 49.644 81.716 

E(Beta) 0.999 0.950 

Std(Tc) 25.302 35.894 

Std(Beta) 0.0415 0.0419 

c=2500 Beta=1.0 
(size) 

Beta=0.95 
(power) 

Rejection rate 0.0516 0.7743 

E(Tc) 100.181 251.129 

E(Beta) 0.9996 0.9502 

Std(Tc) 51.708 82.176 

Std(Beta) 0.0210 0.0209 
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∞<= 22
1 )( σεE , and ix are generated by (1) 

with 1=β  and .00 =x  Then, we have, 
as ∞→c , 
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where tB is a standard Brownian motion on ),0[ ∞  

and tX is a Bessel process satisfying  
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1δ
 

with the dimension 2/3=δ and the initial 
value 00 =X . 

We note that
cTβ̂ is asymptotically normally 

distributed, which is consistent with the result of 
Lai and Siegmund (1983), and that cT is )( cOp . 
Due to the results in Borodin and Salminen (2002, 
p.386), we know the analytical expression of the 
joint density: 
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Using this joint density, we can obtain the 
asymptotic moments of cT , for example, 
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               .0921.2≈  

We set c=600 in the simulation presented in Table 
2 such that the expected sample size is about 50, 
namely 500921.2)( =≈ cTE c , and similarly 
for c=2500. 

Figure 2 shows the joint density function and its 
contour plot generated from a simulation. The two 
statistics are obviously highly correlated.  

Figure 2. Joint density under the null  

 

3. JOINT DISTRIBUTION UNDER LOCAL 
ALTERNATIVES 

We consider the following local alternative; 

1:0 =βH vs 
c

H c
Δ

−=Δ 1: β , 

whereΔ is a positive constant. We believe this is a 
natural local alternative setting as we consider the 
asymptotics of ∞→c . The following theorem 
provides the joint density of AR(1) coefficient 
estimator and the stopping time under the above 
local alternatives. 

THEOREM 2 

Suppose the same conditions on ε ’s stated in 
Theorem 1 hold. Under the local alternative, we 
have,  

(i) as ∞→c , 
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where Δ
tX is the Bessel process with a drift 

solving the stochastic differential equation 

t
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X
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+Δ−= Δ
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2
1( δ

 

with 2/3=δ and .00 =ΔX   

(ii) Let ),(0 uzf be the joint density under the null 
shown in Theorem 1, then that under the local 
alternatives is give by 

),()
2
1exp(),( 02 uzfzuzf Δ−Δ−=Δ . 

Figure 3.  Contours of joint densities under the 
null ( 0=Δ ) and the alternative ( 1=Δ ) 

  

Obviously, 0=Δ reduces to Theorem 1. Figure 3 
compares the contours of ),(0 uzf and ),( uzf Δ . 

 

4. LIKELIHOOD RATIO TYPE TEST AND 
LAN PROPERTY 

4.1. Likelihood Ratio 

Using Theorem 2 (ii), we can construct a 
likelihood ratio type test statistic based on the two 
statistics: 

      2
0

2
1

),(
),(log Δ+Δ=Δ z

uzf
uzf

. 

This indicates that the stopping time does not carry 
any additional information in testing the null of 
unit root to the information carried by the AR(1) 
coefficient estimate. This is a natural result in the 
case of normal disturbances, but it is also true for 
non-normal cases. 

We note that this likelihood ratio is not exactly the 
likelihood ratio in the ordinary sense because it 
does not present the likelihood of the observations 
themselves, but only their functions, namely 

cTβ̂ and cT .  A test based on this likelihood ratio 
may be a reasonable approach especially when we 
do not know the distribution of the disturbances as 
we cannot write down the ordinary likelihood. 

4.2. Local Asymptotic Normality 

Suppose that the disturbances are normally 
independently distributed, ),0(~ 2σε iidNi . 
Then the log likelihood ratio of the observations is 
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The first term on the right is a martingale and 
asymptotically normally distributed, and the 
second term converges to a constant as ∞→c  
due to the definition of the stopping time. 
Therefore, it possesses the LAN property. The 
points are that we stop sampling when the 
summand of the second term hits c and that this 
quantity coincides with the quadratic variation of 
the first martingale term in the limit. Though we 
are not sure if the LAN property implies some 
optimality in making inferences in sequential 
sampling setup as in the standard sampling, it 
might be likely. We need further research on this.  

5. CONCLUDING REMARKS 

This paper considers testing for the existence of a 
unit root under the sequential sampling proposed 
by Lai and Siegmund (1983) and Shiryaev and 
Spokoiny (1997). We obtain joint distributions of 
AR(1) coefficient estimator and the stopping time 
both under the null and local alternatives. The null 
distribution of stopping time is characterized by a 
Bessel process with dimension 3/2, while the 
distribution under the local alternatives is 
represented in terms of the same Bessel process 
with a drift.  
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Though sequential sampling situation may not be 
very likely in most econometric time series except 
some cases where we need to make a, say, policy 
decision as soon as possible, the proposed 
sequential unit root test procedure may be a good 
alternative to the common DF test in terms of 
power. It is known that DF test does not have a 
sufficient power under small or medium sample 
size, but the SURT procedure automatically let 
econometricians wait until “sufficient” information 
is accumulated to make a statistical decision. It 
will be possible to apply this procedure to, for 
instance, the decision making of fund managers 
who may like to know if a series has a unit root or 
not, namely stable or not, as early as possible. 

We provide a likelihood ratio type test statistic, 
which is shown to be independent of the stopping 
time in the first order asymptotics. It may become 
important in the second order. We also show that it 
has a LAN property when the disturbances are 
normally distributed. 

There are some possibilities of extentions for 
future research. Firstly, we may need to compare 
the SURT with the sequential probability ratio test 
(SPRT) which is a standard testing procedure 
under sequential sampling. To the best of our 
knowledge, there has been considered no such test 
or its asymptotic theory in time series settings. 
Also, SPRT requires a specification in distribution, 
which we think may be too restrictive.  

Secondly, we use the stopping time proposed in 
Lai and Siegmund (1983), which uses the 
generalized information. It is a suitable choice of 
stopping rule in the case of estimation since it 
coincides with the variance of the estimator, so 
that controlling this quantity means controlling the 
variance in fact. However, it may not be the best 
approach for the sake of testing since it may be 
more appropriate to control the accuracy of 
decision, or size and power.  There is a possibility 
of pursuing different stopping rules for testing.  

Thirdly, we treat the simplest case of scalar AR(1) 
without constant or drift terms. We may be able to 
relax these restrictions. We could extend the 
procedure to AR(p) processes, series with drift or 
trend, or long memory processes. Also, it may be 
more practically useful to consider tests for 
structural break or change point problems. 
Research toward these directions is currently under 
way. 
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