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EXTENDED ABSTRACT  

Derivatives of functions are used very often in 
groundwater modelling. Computation of 
sensitivity, optimization problems and inverse 
modelling  require evaluating of derivatives. The 
most commonly used method for derivative 
estimation is the finite difference method. This 
method, however, suffers from poor accuracy and 
its result is highly dependent on the step size of 
the finite difference. In addition, the method is 
slow and requires solving the function many times 
to obtain the derivative. 

Automatic differentiation is a powerful technique 
to compute the derivatives of a function given by 
a piece of code. The derivative of a two-
dimensional finite element groundwater flow and 
contaminant transport model (MCB2D) was 
obtained using Automatic Differentiation  of 
Fortran (ADIFOR) and was used for groundwater 
sensitivity analysis. 

Two input parameters were considered as 
uncertain (random): hydraulic conductivity and 
groundwater recharge. Sensitivity analysis was 
done to see the effect of the hydraulic 
conductivity and groundwater recharge on the 
model output.  

Sensitivity analysis has shown that the model 
results are more sensitive to changes in hydraulic 
conductivity than  groundwater recharge. 

Uncertainty analysis was also done to investigate 
the effect of uncertainty in model input parameters 
on the model output.  The uncertainty in input 
parameters was changed by considering different 
values of coefficient of variation (COV).  

Results of uncertainty analysis show that the 
uncertainty in hydraulic conductivity has more 
impact on the model results than the uncertainty in 
groundwater recharge. As the uncertainty in model 
parameters increase, the model underestimates the 
output. 

The results achieved in this study have revealed that 
automatic differentiation is an efficient tool for 
sensitivity analysis. Automatic differentiation is 
easy to apply on most groundwater models and 
does not require knowledge of the model code. The 
application of automatic differentiation is very 
promising in groundwater modelling as it reduces 
the uncertainty of classical differentiation methods. 

 

 

1. INTRODUCTION 

Groundwater models are very efficient tools for 
simulating groundwater movement and 
contaminant transport. Despite the power of the 
numerical models, the accuracy in their output is 
uncertain because of uncertainty in 
hydrogeological groundwater models (Baalousha 
2003, Baalousha 2006). The sources of uncertainty 
in groundwater modelling can be classified into 
three categories: natural uncertainty, model 
uncertainty and parameter uncertainty. Natural 
uncertainty is the inherent variation in the physical 
system; it is stochastic, irreducible uncertainty. 
This randomness can exist in time or in space. 

Model uncertainty is a result of estimations in the 
mathematical equations used in the model and is 
referred to as conceptual error (Hua Lei and 
Schilling, 1996). Parameter uncertainty is 
associated with input data, which is used in any 
model. It is a result of errors in measurements and 
data collection.  

Given the above-mentioned sources of uncertainty, 
the modelling process turns into a complicated 
task. The tendency has been to use groundwater 
models in a deterministic way, assuming the input 
parameters are accurate and representative of the 
reality. Thus, the accuracy of the output of 
deterministic models is questionable. 
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As the number of input parameters in groundwater 
modelling is usually large, it is important to 
concentrate on those parameters that have a greater 
influence on the model results. Sensitivity analysis 
has widely been used to find out the importance of 
each input parameter in groundwater modelling. 
That is, to estimate the rate of change in the output 
of a model with respect to changes in model input. 
It has also been used to allocate and design  
sampling sites. This analysis is very helpful in 
designing site investigation wells since the 
sampling points should be located at points of high 
sensitivity. Moreover, sensitivity analysis can help 
in modelling process to pay more attention on the 
important input variables, and thus, improve the 
calibration process. Sensitivity analysis is also  
important to understand the general behaviour of a 
model. As a result, uncertainty of a model output 
can be reduced if sensitivity analysis is being 
carried out. 

The most widely used method for computing 
derivatives in groundwater models is the finite 
difference method. The accuracy of finite 
difference method depends on the step size of the 
difference. In one hand, if the step size is too large, 
the truncation error will be large. On the other 
hand, a small step size will result in large 
cancellation error. As a result, it is difficult to 
determine the appropriate step size for to achieve a 
higher accuracy. In groundwater problems, finite 
difference method is the common way to obtain 
the derivative of functions for sensitivity analysis 
and optimization. However, the finite difference 
method is not accurate, its accuracy is dependent 
on the increment size which affects the 
convergence rate (Baalousha 2006). 

Therefore, the uncertainty resulting from the finite 
difference estimation with the other sources of 
uncertainty adds more errors into the model 
output. 

Automatic differentiation is a good alternative for 
evaluating the gradient vector instead of using the 
crude finite difference method or manual method. 
The advantages of automatic differentiation are 
that it is easy to implement and does not require 
any knowledge of the original code contents.  

In this study, automatic differentiation was used 
for sensitivity analysis in a groundwater flow and 
contaminant transport model.  

2. AUTOMATIC DIFFERENTIATION 

Automatic differentiation is used to evaluate the 
derivative of the models codes. The advantages of 
automatic differentiation are that it is easy to 

implement, does not require any knowledge of the 
original code contents and can be applied to any 
model code. The accuracy of automatic 
differentiation is up to machine precision. 
ADIFOR “Automatic Differentiation of Fortran” 
(Bishof et. al. 1996, Bischof et.al. 2002 ) is a 
Fortran pre-processor to generate a code that 
computes the partial derivatives of dependent 
variables with respect to pre-defined independent 
variables. There are two approaches for computing 
derivatives of functions using automatic 
differentiation: the forward mode and the reverse 
mode (Bischof et.al. 2002). As most groundwater 
models codes are written in Fortran, ADIFOR is 
the most appropriate automatic differentiation tool.  
The idea of automatic differentiation is dependent 
on the fact that any computer code, regardless to 
its length, is composed of set of mathematical 
operations such as summation, multiplication, etc. 
Using the chain rule of calculus on all 
mathematical operation in the code, ADIFOR 
obtains the derivative of a dependent variable with 
respect to the independent one.  

2.1. Forward Mode 

 
Given a simple composition ƒ(x)=g(y(x)) the chain 
rule gives: 

dx
dy

dy
dg

dx
df

=  Equation  1 

Forward mode traverses the chain rule from right 
to left, that is dy/dx is computed first and then 
dg/dy is computed. Forward mode is superior for 
functions ƒ: ℜ→ℜm with m>>1. So the forward 
mode is appropriate when the number of input 
variable is low. 

2.2. Reverse Mode 

The reverse mode traverses the chain rule from left 
to right. Reverse mode is superior to forward mode 
for functions ƒ: ℜn→ℜ  with n>>1. Therefore, 
reverse mode is good for problems with many 
input parameters. 

In this study, ADIFOR was used to generate the 
derivative code of the two-dimensional finite 
element groundwater flow and contaminant 
transport model (MCB2D) (Sun 96). The resulted 
code by ADIFOR is a Fortran subroutine including 
the derivative code for the pre-defined input 
parameters and the original model code. ADIFOR 
2.0 uses the forward mode to obtain the derivative. 
The input uncertain parameters, for which the 
derivative of the model output should be obtained, 
are identified for the model as the hydraulic 
conductivity and the groundwater recharge. 
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Hydraulic conductivity and groundwater recharge 
have the highest uncertainty among other input 
parameters. This is the reason why they were 
considered as random variables. 
The resulting derivative code of the original model 
was obtained and the required gradient vector was 
evaluated with a very good accuracy and fewer 
computations and time in comparison to the finite 
difference method. 
 

2.3. Contaminant Transport model 

A groundwater flow and contaminant transport 
model was used in this study and coupled with 
automatic differentiation. MCB2D is a two-
dimensional finite element groundwater flow and 
transport model written in Fortran computer 
language. The model couples groundwater flow 
with contaminant transport using a Multiple Cell 
Balance Method (Sun 96) to solve the two-
dimensional advection dispersion equation. After 
identification of uncertain input parameters 
(groundwater recharge and hydraulic conductivity 
in this case study), the derivative code was 
obtained using ADIFOR.  

A case study from the northern area of the Gaza 
Strip (Figure 1), Palestine was used to demonstrate 
the use of automatic differentiation in contaminant 
transport model. 

The finite element mesh consists of 532 nodes and 
977 elements (Figure 2). A wastewater treatment 
plant in the area of study was considered as a point 
source of pollution. The aquifer in the area is 
unconfined with groundwater depth varying 
between 20 and 35 meters (above mean sea level). 

The geology of the area is composed of calcareous 
sandstone, and gravel with high hydraulic 
conductivity. Values of aquifer parameters were 
obtained from pumping test data and from the 
literature (Melloul and Bachmat 1975, Yakirevich  
et. al. 1998). Values of groundwater recharge were 
obtained from the literature (Baalousha 2005, 
IWACO and WRAP 1995, Melloul A., Bachmat 
1975). Pumping data and groundwater levels were 
obtained from the Palestinian Water Authority 
(PWA). Statistical analysis of the collected data 
was carried out to find the statistical distributions 
of the input parameters (mean, variance and 
probability distribution). 

Steady state conditions were assumed at the 
beginning of simulation (1995) and the output was 
used for transient simulation (between 1995-2005). 

2.4. Sensitivity analysis 

Sensitivity of the model output (C) with respect to 
each input variable can be computed as follows: 

 
i

x x
CS

i ∂
∂

=   Equation 2 

where Sxi is the sensitivity of the parameter xi . In 
this case, the sensitivity parameters are the 
groundwater recharge (R), and the hydraulic 
conductivity (K). The mode was run to obtain the 
dimensionless concentration of pollutant. That is, 
the dimensionless concentration is (C/C0), where C 
is the pollution concentration at any point and C0 is 
the pollution concentration at the source.  

Figure 3 and Figure 4 show the sensitivity of 
model output (concentration of pollutant) with 
respect to hydraulic conductivity and groundwater 
recharge respectively at the end of transient 
simulation period.   

From sensitivity figures, the following conclusion 
can be drawn: 

• In general, the model output is more 
sensitive to changes in hydraulic 
conductivity than changes in groundwater 
recharge. 

• It is also clear that the sensitivity of 
hydraulic conductivity is high at the 
sources of pollution and in the 
contamination path. 

• The negative values of sensitivity indicate 
that a decrease in the value of parameter 
leads to higher probability of exceedance. 

• The sensitivity of groundwater recharge is 
small in general compared to the 
sensitivity of hydraulic conductivity. 

2.5. Uncertainty Analysis 

Uncertainty analysis of model input was carried 
out to investigate the effect of uncertainty in model 
parameters on the model output. The uncertainty 
measure is the coefficient of variation for each 
random variable. Coefficient of variation (CV) is a 
statistical measure of the deviation of a variable 
from its mean, and it is used to determine the 
degree of relative dispersion of the population. 
That is, CV is the standard deviation divided by 
the mean value of a population.  

Different formulations of coefficient of variation 
(COV) for each input parameter were set up and 
the model output was obtained at each formulation. 
Different values of COV were used for this 
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purpose. For hydraulic conductivity, COV was 
given different values as shown in Figure 5 and the 
model was run keeping the other parameters 
constant. The same procedure was followed for 
groundwater recharge. Finally, both hydraulic 
conductivity and groundwater recharge were given 
different values of COV simultaneously and the 
results of probability of failure were obtained for 
each case. Figure 5 shows model output at 
different values of COV. 

 The first line in Figure 5 (lower line) shows the 
effect of uncertainty in hydraulic conductivity 
alone; the upper line (top) shows effect of 
uncertainty in the groundwater recharge and the 
middle line effect of uncertainty in both 
groundwater recharge and hydraulic conductivity. 
For all cases, it was found that the concentration of 
contamination decreases as the uncertainty of 
parameter increases and vice versa. So the increase 
in uncertainty of model parameters results in 
underestimation of model output. 

It was found that the model output is more 
sensitive to uncertainty in hydraulic conductivity 
than the uncertainty in groundwater recharge. In 
case of low uncertainty (low COV), both hydraulic 
conductivity and groundwater recharge have the 
same degree of influence on the model output. 

2.6. Conclusions and Recommendations 

 

Automatic differentiation is a powerful technique 
for computing derivative codes of groundwater 
models up to many orders and with precision of 
the machine code. Automatic differentiation of 
Fortran (ADIFOR) is good and suites groundwater 
models as it works with Fortran-written programs.  

Results of sensitivity analysis reveal that the 
hydraulic conductivity has greater effect on the 
model results than the groundwater recharge. 
Uncertainty of model input parameters plays a big 
role in contaminant transport modelling.  
Based on the results of uncertainty analysis, it was 
found that the model output decreases as  
uncertainty in either parameter (hydraulic 
conductivity and groundwater recharge) increases. 
The model is more sensitive to likely changes in 
uncertainty of hydraulic conductivity than 
groundwater recharge. 
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Figure 1 The study area 

 

 

 

 
Figure 2 2D finite element mesh and boundary 
conditions 

 

 
Figure 3 Sensitivity of contaminant transport 
model with respect to hydraulic conductivity 

 

 
Figure 4 Sensitivity of contaminant transport 
model with respect to groundwater recharge. 
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Figure 5 Effect of uncertainty in model input parameters on the results 
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