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EXTENDED ABSTRACT 

In this paper a review of the existing rural water 
demand modelling approaches employed by 
various agencies across Australia is provided. 
From our review we conclude that existing models 
do not reflect the behavioural complexities and 
uncertainties associated with current irrigated 
farming practices. Thus, a better modelling 
approach is needed to improve the demand 
components of broader water allocation and 
catchment models. To address this need, a next 
generation rural demand model has been 
developed based on the conceptual approach 
shown in Figure 1. This modelling approach 
integrates hydrologic, biophysical and behavioural 
factors associated with irrigation water demand. 
This modelling approach also caters for data input 
and modelling errors explicitly, generating a 
probability distribution of water demand to support 
more informed decision making. The outputs from 

the proposed rural water demand model can be 
used as stochastic demand inputs to a broader 
catchment models. However, at present this model 
can not be fully realised due to data limitations. 
Therefore, a modified (interim) approach is 
outlined in this paper to take into account of data 
availability realities. This approach is based on 
stochastic multi-objective optimisation and crop-
water simulations. It is contended that this 
modelling approach is a considerable step towards 
the next generation of rural water demand 
modelling. This research work is part of larger 
eWater CRC projects investigating uncertainty 
analysis in models and improving water 
management decisions. 

The key benefits of the proposed model include: 
integration of economic, hydrologic, climatic and 
biological factors related to irrigation water 
demand and stochastic model output. 
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Figure 1. Conceptual Rural Demand Model. This is how the next generation of rural demand models 

should look. 
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1. INTRODUCTION 

Reliable demand models are critical tools for 
effective water resources and catchment 
management. Effective demand modelling can 
allow policy-makers and managers to gain insight 
into the potential consequences of system changes, 
be they regulatory changes, infrastructure changes, 
climatic or other physical changes. In the rural 
context, demand modelling is made especially 
important due to the complexity and variability of 
potential demands between users and through time.  

Historically, existing water demand models have 
been applied with success in the context of policy 
formulation. However, the current generation of 
models is not well positioned to deal with future 
needs. This is primarily since they have been built 
on relatively inflexible assumptions and processes 
reflecting historical system and user behaviour. 
New options open to irrigators and the changing 
nature of irrigation technology means that a more 
flexible modelling environment has become 
necessary, especially in terms of modelling user 
behaviour. Furthermore, these models have 
traditionally produced deterministic outputs 
without explicit recognition of the uncertainty of 
the model structure, parameters, processes or 
inputs. Whilst the application of deterministic 
outputs may be appropriate for some analyses, 
consideration of uncertainty is important to 
improve the robustness of decision-making.  

This paper outlines a next generation approach to 
demand modelling reflecting the need to better 
model user behaviour and explicitly reflect 
uncertainty. This research builds on the substantial 
current knowledge base embodied in a wide range 
of existing demand models. This paper begins with 
a summary of existing demand modelling 
approaches in Section 2, and then an ideal 
modelling approach, which is a long-term goal, is 
proposed in Section 3. Finally, a modified 
(interim) modelling approach, which takes into 
account current data availabilities, is described in 
Section 4. The process of how this approach is 
currently being applied to two irrigation districts, 
in the form of prototype models, is presented in 
Section 5. Finally, the conclusions of our review 
and proposed modelling approaches are provided 
in the last section. 

2. EXISTING DEMAND MODELS 

A number of definitions are provided here to 
ensure readers understand the meaning of terms 
used when discussing existing demand modelling 
approaches. 

Predicting user demands in a rural context is 
extremely complex. Demands vary significantly 
according to the type of use, climatic 
considerations, individual user characteristics such 
as their risk propensity, the potential water sources 
available and water trading considerations. Water 
trade modelling is perhaps the most uncertain 
component of water allocation modelling since 
little data exists to calibrate and validate trading 
processes. Water trading itself involves a number 
of parameter and forcing variables such as 
commodity prices, the comparative price of water, 
the risk profile of users, the flexibility of trading 
policies and of course, the water allocation itself. 
In fact, the interdependency of the volume of water 
trade (particularly temporary trade) and water 
allocation is a significant complicating factor in a 
demand modelling structure. This usually means a 
sub-optimisation module is required to model 
water trading within the overall allocation model 
(unless a time series or empirical approach is taken 
which is difficult given the sparse data sets often 
available in practice). 

In response to these issues a number of approaches 
have been applied to modelling demand. Some of 
these include empirical or time series approaches, 
quasi-economic approaches, models based on 
individual behaviour, models based on crop water 
requirements under particular climatic conditions 
(which ignore water trading) and a blend of the 
above. However, the lack of baseline data presents 
significant challenges in calibrating any of the 
above demand approaches.  

To illustrate this, several irrigation demand models 
that have been reviewed and compared are listed in 
Table 1 (adapted from Zaman et al., 2006a). The 
review focused on how existing models included 
key factors that affect irrigation water demand: 

• Biophysical factors – crop-soil-climate 
interactions; 

• Behavioural factors – farming objectives 
that are driving/influencing management 
decisions; and 

• Supply factors – water availability.  

The review included seven biophysical water 
demand models and three models that primarily 
are based on the economic drivers of irrigation 
water demand (TERM-Water, WRAM and 
SALSA). Economic drivers include maximizing 
social benefit and agricultural gross margins, 
utilising water trade opportunities, increasing 
water productivity, etc. This review focuses on 
models (and methods) that are mainly used as 
water management tools at the catchment scale 
(rather than on farms). 
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In this review of existing water demand models, 
several major limitations have been identified. 
First, these models do not explicitly incorporate 
the key behavioural factors underlying irrigation 
water demand, and in particular, variable risk 
preferences. Although IQQM Crop Model 2 has 
risk functions these are aggregated at an irrigation 
district level, i.e. the spatial scale is not sufficiently 
disaggregated. This limitation becomes clear if 
policymakers want to capture the different 
responses of two neighbouring farms, with similar 
crop mixes, which have different water usage. The 
level of aggregation and the lack of sufficient 
variables for behavioural factors mean that existing 
models can not be used to address such questions. 
Another major limitation of the existing models is 
that the factors related to irrigators’ water demand 
are handled in a deterministic manner. Not only 
does this limit the robustness of these models, but 
also introduces errors during model inputs / 
processes. The next generation of irrigation 
demands should model key variables and 
parameters in a stochastic manner. For example, 
rather than have a single (average) crop factor for a 
plant (as in PRIDE and IQQM Crop Model 2), it 
would be better to have a distribution of crop 
factors. This approach would be more likely to 
represent reality at the farm level where the crop 
yield varies from field to field. The stochastic 
approach would also make it easier to incorporate 
uncertainty in model inputs and processes, which 
is discussed below. This would be particularly 
useful in ungauged catchments where there tends 

to be increased uncertainty due to sparse data 
availability.  

A further limitation of existing models is that the 
variety of water source options available to 
irrigators is not adequately modelled. For example, 
in PRIDE, Crop Growth Model 2 and the 
economic models, there are no options to include 
on-farm storage as a potential source of water. 
Only IQQM Crop Model 2 and Tiddalik provide 
some alternative water sourcing options at 
irrigation centres. 

3. CONCEPTUAL RURAL DEMAND 
MODEL 

A conceptual rural demand model, shown in 
Figure 1, was developed after reviewing existing 
models, irrigation demand literature and 
consultation with farmers and water supply 
authorities. This conceptual model captures the 
key processes related to intra-seasonal and inter-
seasonal irrigation water demand. Although the 
components are discussed below at the farm-scale 
level, the model can easily be applied at a regional 
level. The difference would be in the distributions 
of the input data and model parameters. 

3.1. Module A – Crop Mix Module 

At the start of each season, a farmer makes critical 
decisions with regards to the areas planted. These 
complex decisions are primarily based on the 

Table 1. Summary of existing demand model characteristics (adapted from Zaman et al. (2006)) 

Model Biophysical Factors Behavioural Factors Supply Factors Time-step Spatial scale 

PRIDE Crop factors, soil 
characteristics 

Autumn irrigation, 
reduction factors 

Main channels Daily to 
monthly 

Farm to district 

IQQM Crop 
Model 2 

Crop factors, soil 
characteristics 

Risk-taking behaviour 
for initial planting area 

On farm losses Daily to 
Monthly 

Farm to district 

CLASS CGM Detailed crop and soil 
characteristics 

Stubble management 
options 

Climate 
conditions 

Sub-Daily 
to monthly 

Farm to district 

Tiddalik Detailed crop and soil 
characteristics 

Over and under 
irrigation options 

On-farm storage Daily to 
monthly 

Paddock to 
district 

SWAGMAN 
Farm 

Detailed crop and soil 
characteristics 

Net profit 
maximization 

Allocations Daily to 
Monthly 

Paddock to Farm 

MSM Rainfall and 
temperature 

None Allocations, 
water availability 

Monthly District 

PERFECT Detailed crop and soil 
characteristics 

Crop planting and 
tillage options 

None Daily Farm to district 

TERM-Water Simple production 
functions 

Substitution options Allocations Annual ABS Statistical 
division 

WRAM As in PRIDE or 
IQQM Crop Model 2 

Maximise net return 
(regional) 

Water availability 
constraints 

Annual  District to 
catchment 

SALSA Simple production 
functions 

Maximise net return 
(regional) 

Key hydrologic 
processes 

Annual  Catchment 
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farm’s financial situation, geographical location, 
permanent water entitlement and expectations 
about how the season will unfold (adapted from 
Zaman et al., 2006b). In particular, the farmer 
forms some expectations about climatic 
conditions, irrigation water availability, water 
market activity and farm input and output prices. 
The farmer’s risk-profile also plays an important 
part in these decisions, e.g. a farmer willing to take 
greater risk that wet climatic conditions will 
prevail would plant a larger area of annual crops 
than another farmer who takes less risk. The output 
from this module will give a range of expected 
crop mixes. This module should consist of 
algorithms representing physical and behavioural 
processes. By using statistical distributions of 
farmers’ risk profiles (or functions), this module 
should allow flexibility in how irrigators’ 
behaviour is incorporated in the model. 

3.2. Module B – Biophysical Crop 
Water Module  

This module is required to incorporate the 
tradeoffs involved in irrigation depth and crop 
yields, subject to climatic and other factors (such 
as fertilizer usage). This module, operating at a 
weekly/monthly time-step, would take in as input 
the crop mixes and water usage from previous time 
steps. This module could be similar to the CLASS 
CGM model. However, the module will output a 
set of crop water requirement profiles for the 
remainder of the season, which will be used as 
inputs to the Water Trade-off Module (Module D). 
There should be no behavioural relationships / 
parameters in this module, i.e. it is a module of 
biophysical processes only. 

3.3. Module C –Water Source Module  

This module would play an important role in 
setting constraints to farmers’ decisions related to 
water availability (supply). It would operate at a 
weekly/monthly time step and incorporate 
information about water allocations, supply 
(irrigation delivery), on-farm storage and 
groundwater resources. The module would provide 
a set of water usage possibilities from multiple 
sources. The output from this module will be 
required as input to the Water Trade-off Module 
(Module D), as the volume of water available to 
the farmer is an important factor in the farmer’s 
water trading and ordering decisions. There will be 
no behavioural relationships/parameters in this 
module, i.e. it is a module of physical processes. 
This module could be populated by output from 
water allocation models such as REALM and 
IQQM. 

3.4. Module D – Trade-Off Module 

This is a key element of the preferred rural water 
demand model structure. This module would take 
in water availability factors and water-crop yield 
relationships from the other modules. Then, 
combined with risk-return profiles and propensity 
to act parameters, the module will output the 
expected volume of water ordered at given 
probabilities, as shown in Figure 2. This can be on 
a monthly basis with probabilities of non-
exceedance, e.g. we could say in August there is a 
90% chance that the volume of water ordered will 
not exceed 40ML (see top chart in Figure 2). The 
monthly outputs can then be combined to make 
estimates for the annual volume of water ordered 
at different exceedance probabilities, e.g. we 
would be able to say there is a 10% chance that the 
total volume ordered by March would exceed 
300ML in the season being modelled (see lower 
chart in Figure 2). Module D would consist of 
algorithms representing behavioural processes. 
The Water Trade-off Module is envisaged to 
operate at various time-steps. In the short-run 
(weekly/monthly time-step) decisions to order, buy 
or sell would be made based on expectations of 
water market movements, changes to allocations, 
on-farm rainfall, etc. At longer-time steps 
(annual/inter-annual) decisions related to trading 
permanent water entitlements would be modelled. 

The outputs from the preferred rural water demand 
model would be used as stochastic demand inputs 
to a broader water resources planning model, such 
as REALM and IQQM. The latter would also 
incorporate urban demands, physical distribution 
features, and other key water system processes. 
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Figure 2. Expected output from Module D 
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4. PROPOSED MODELLING APPROACH 

The conceptual model is being delivered in two 
stages: proof of concept using available data, 
followed by full implementation using data 
collected specifically to support demonstration of 
this model. This section describes the initial stage 
with the modified modelling approach. 

The proposed model structure, shown in Figure 3, 
can be described as a lumped, stochastic, multiple 
objective optimisation model. The model will be 
lumped because it will treat the biophysical 
variables associated with an irrigation area as one 
mixed-farming entity. The model will be stochastic 
since key parameters are represented by 
distributions rather than single values. The model 
also optimizes the farmers’ profit and risk 
averseness objectives (through linear 
programming); hence it will be a multiple 
objective optimisation model. The trade-off 
between the two conflicting objectives will be 
found using a compromise programming (CP) 
approach (Romero and Rehman 2003). 

The key model parameters are the distribution of 
relative weightings between the two objectives and 
the probability distribution of final allocations in 
the irrigation system. The distribution of 
weightings should capture the range of profit 
maximizing and risk averseness underlying 
irrigators’ behaviour in the modelled area. The 
probability distribution of final allocations will 
provide a measure of the likely water availability 
at different allocation levels during the season. For 

example, given an allocation of 60% in September, 
there may be a 10% chance of a final allocation of 
70% in March, a 30% chance of a final allocation 
of 80%, etc. 

The proposed model can also be used in a 
distributed fashion by setting up several 
realisations of this demand model as nodes to 
represent different subareas in an irrigation district. 
Thus, the key model parameters can be varied 
depending on the location of the farm, the farm 
type and the farmers’ behaviours. 

In relation to the Conceptual Rural Demand Model 
(Figure 1), the multiple objective optimisation 
procedure corresponds to Module A (see Figure 3). 
In other words, the irrigators’ behavioural factors 
are incorporated as two objectives: 

• maximise wealth (measured as gross 
margin ($/ha)) – subject to expected final 
water allocation, irrigable areas, expected 
water market activity, biophysical crop 
water demand; and  

• minimise risk of suffering a water 
shortage (% probability/ha) - subject to 
the same constraints as above. 

The optimisation procedure produces the feasible 
set of crop mixes, which are then fed into Module 
B. This module is a modified version of Tiddalik, 
which is a crop-water simulation model 
(Hornbuckle et al., 2005). This module provides an 
estimate of the volume of water required for each 
of the feasible cop mixes produced in Module A. 
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Figure 3. Proposed Model Structure, taking into account current data availability. 
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In the modified prototype mode, all water source 
information would be included as constraints in 
Module A. This removes the need for a separate 
Module C. 

Module D contains the compromise programming 
procedure where the trade-offs between the two 
competing objectives are modelled. The 
compromise between these two conflicting 
objectives is analogous to risk-return tradeoffs in 
investments. Ideally, one would like a high return 
(large gross margins) with no risk. In most cases 
this is not feasible and a compromise solution that 
is closest to this ideal point is sought. The 
distribution of weightings between the two 
objectives would be used in this Module and the 
best compromise solution for each weighting will 
be chosen from the feasible set produced in 
Module A. The associated water demand with the 
best compromise solutions will be obtained from 
the information passed on from Module B. 

After the initial, feasible crop areas are determined 
by Module A (multi-objective optimisation 
procedure) at the start of the season, the module 
only runs again when certain conditions occur. At 
this stage of the model development, the decision 
to run the optimisation component will depend on 
two criteria: 

• crop growth stage; and  
• significant changes to on farm water 

availability, i.e. a few days of heavy 
rainfall, or a sharp rise in the allocation, 
marked changes in market water price, 
etc. 

These trigger conditions reflect situations when 
further trade-offs (compromises) made by 
irrigators need to be modelled. These criteria are 
set exogenously as trigger points for running the 
optimisation component during the season. 

5. PROTOYPE MODELS 

Currently prototype models based on the above 
proposed modelling approach are being developed 
for the Finley and Shepparton Irrigation Districts 
(ID).  

The basic features of the case study areas are 
provided in Table 2. The Finley ID is quite 
extensive, with rice, cereal crops and pastures as 
the main agricultural activities. Shepparton ID is a 
concentrated irrigation area with an overall 
application rate of about 40 ML/ha/yr on average 
for dairying, horticultural and mixed farming 
activities.  

The models have been developed in The Invisible 
Modelling Environment (TIME), which is based 
on the .Net framework.  

5.1. Data 

The model requires daily rainfall, reference crop 
evapotranspiration and seasonal allocation data as 
time-series input. Other key parameter information 
required are soil properties, crop factors, sowing 
dates, irrigation system details and on-farm 
storage/recycling information. In the context of 
ungauged catchments, some of these parameter 
values may not be known accurately. The level of 
uncertainty can be represented in the output of the 
model, which is generated stochastically. 

Other data requirements for the optimisation 
component include: gross margins of crops ($/ha) 
and their variations; crop rotation constraints. 
These data are readily available from ABARE, 
relevant water supply authorities and agronomic 
technical reports. 

For the prototype models, daily water order and 
climate data are available for the Finley area from 
Murray Irrigation. However, water order data for 
the Shepparton Irrigation Area is available at 
weekly time-step only from Goulburn-Murray 
Water. 

The distribution of likely water allocations will be 
based on water allocation simulation models used 
by the relevant water authorities. For example, the 
Goulburn Simulation Model (GSM) can estimate 
the monthly allocations for Shepparton ID for a 
100-year period (DSE 2003). The uncertainties 
introduced by relying on separate model output are 
one of the limitations accepted in the initial 

Table 2. Basic Features of Shepparton Irrigation 
District 

Feature Finley Shepparton 
Area Normally 
Irrigated (ha) 150,000 51,000 

Total Area (ha) 403,700 81,750 
Entitlement Volume 
(ML) 900,000 181,500 

Approximate water 
usage (ML/yr) 500,000 200,000 

Main Agricultural 
Activities 

Rice, cereal crops, 
pastures 

Dairying, stone and 
pome fruit, mixed 

cropping and grazing

Water Order Data Daily from 1998-
2004 

Weekly from 1994-
2004 

Climate Data Daily data up to 2004 Daily data up to 2004

Cropping Data Areas annual from 
1998 

Areas and yield for 
few years 
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modelling stage which will be improved with full 
implementation of the conceptual model. 

5.2. Proposed Model Calibration and 
Validation Procedure 

The prototype models are calibrated (and currently 
being validated) with observed water order data 
and crop areas. As the models output a distribution 
of water orders for each time-step, robust model 
calibration/validation depends on setting 
appropriate criteria. For example, the calibration 
can be based on the observed data series being 
consistently near the median of the output 
distribution. The method of maximum-likelihood 
estimation has been used to calibrate the prototype 
models. An example of how the models are 
calibrated is shown in Figure 4. If matching the 
median was the only criterion, this would mean 
that the parameter set producing Output 2 would 
be chosen. A more relaxed calibration criterion can 
be the selection of the parameter set that ensures 
the observed water orders lie in the 90% 
probability range of the distributions in each time 
step. 

Several parameters have been adjusted to calibrate 
the models. These include the distribution of 
weightings of the irrigators’ objectives, final 
allocation probability distributions, crop gross 
margins, crop factors and the criteria for running 
the optimization component (OC). 

A survey of irrigators will be conducted later this 
year as part of the model validation process. The 
survey will attempt to obtain irrigators’ risk 
preferences, farming objectives, water ordering 
logic, etc. It is hoped that data collection 
constraints due to lack of available water in case 
study regions, will be eased. 

 

6. CONCLUSIONS 

There is a clear need for better integration of the 
biophysical and behavioural factors related to 
irrigation water demand. This integrated approach 
has been proposed in the preferred model structure, 
which incorporates several modules that would 
estimate: crop mixes, crop-water relationships, 
water sourcing options and irrigators’ trade-off 
decisions. The proposed model would also be 
stochastic so that uncertainties in model inputs and 
processes could be incorporated explicitly. This 
approach overcomes major limitation of existing 
demand models. 

The key benefits of the proposed model include: 

• integration of economic, hydrologic, 
climatic and biological factors related to 
irrigation water demand; 

• incorporation of irrigator’s behaviour 
(profit maximising and risk minimising 
objectives); and 

• stochastic model output. 

We are on track to have calibrated and validated 
prototype models by the end of 2007.  
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Figure 4. Calibration of Stochastic Output to a 
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