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EXTENDED ABSTRACT 

Conceptual hydrological models can 
parsimoniously capture dominant catchment 
dynamics. However, efficient calibration of their 
parameters is impeded by micro-scale roughness 
and complex macro-scale geometry (including 
multioptimality) of objective functions. These 
difficulties led to an abandonment of Newton-type 
optimisation methods (which rely on smoothness 
and converge to local optima) and motivated a 
shift towards global evolutionary searches. 
 
However, recent work indicates that in many cases 
the optimisation problems listed above are 
numerical artefacts of the model implementation 
and can be removed using smoothing and more 
numerically stable model implementation. 
Importantly, the removal of micro-scale roughness 
of the objective function permits the application of 
Newton-type methods, which are the most efficient 
class of optimisation methods for smooth 
problems, especially as the number of dimensions 
(parameters) increases. In addition, the potential 
multioptimality of parameter distributions can be 
analysed using multistart optimisation strategies. 
 

This paper makes several contributions to 
systematic analysis of parameter distributions 
using multistart Newton-type methods. It 
summarises and illustrates the problematic features 
of objective functions in hydrology (Figure 1), and 
how they can be alleviated using model re-
formulation. The ability to achieve smooth 
objective functions enables the application of 
multistart Newton-type methods, and we supply 
case studies where these methods significantly 
outperform global SCE searches in terms of 
efficiency (Figure 2), as well as in diagnostic 
capabilities in identifying statistically significant 
multiple parameter optima. It is also argued that 
uniform seeding of the search region prior to the 
multistart analysis yields useful insight into the 
macro-structure of the distribution, including the 
relative sizes of attraction basins associated with 
multiple optima. Finally, it is discussed that 
Newton-type methods are the only 
computationally feasible way to carry out the 
optimisation analysis of high-dimensional 
objective functions such as those arising in 
Bayesian hierarchical models of data and model 
uncertainty, and that using analytical model 
derivatives significantly reduces the computational 
cost of the optimisation. 

 

Figure 1. Multiple optima of the SFB model. The 
global mode lies on the bound SDRmax = 0. 

 

Figure 2. Computational cost of the multistart 
quasi-Newton and SCE methods. 
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1. INTRODUCTION 

Conceptual models are important hydrological 
tools that can capture dominant catchment 
dynamics while remaining parsimonious and 
computationally efficient. However, their 
parameters θ must be calibrated from observed 
data by minimising discrepancies between the 
model and the observed data, as measured by an 
objective function. The majority of objective 
functions in hydrology are related to the classical 
sum-of-squares (SS) function Φ. 
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where hn is the prediction of the model at step n 
and yn is the corresponding observed response. 
 
However, model calibration in environmental 
modelling has been plagued by several numerical 
problems, including (PI) micro-scale roughness 
and (PII) complex macro-scale geometry of 
objective functions. The latter category includes 
strongly correlated parameters, especially if the 
correlation is nonlinear (yielding banana-shaped 
distributions) and multioptimality (multimodality) 
of the objective function. These difficulties proved 
intractable for earlier generations of optimisation 
methods (see Gupta and Sorooshian, 1985), 
resulting in a shift away from classical Newton-
type optimisation towards global evolutionary 
searches. For example, the shuffled complex 
evolution (SCE) algorithm of Duan et al. (1992) is 
a widely used evolutionary search method. 
 
However, since nonsmooth optimisation methods 
ignore gradient information about the objective 
function, they usually require many more function 
calls, with the loss of efficiency growing rapidly as 
the number of parameters increases. For simple 
lumped models, the loss of efficiency is often 
tolerable, yet for 2D/3D distributed models, the 
cost of model runs and the number of parameters 
grows significantly. Indeed, Tolson and 
Shoemaker (2007) show that evolutionary searches 
become computationally impractical with growing 
model complexity, while Skahill and Doherty 
(2006) show that with suitable enhancements, the 
Newton-type Gauss-Newton-Marquardt method 
can be far more efficient that the SCE method. 
 
In addition, consider the computational 
requirements of calibration methods that directly 
account for input (rainfall) and model uncertainty 
in hydrological simulations. When this is 
accomplished using Bayesian Total Error Analysis 
(BATEA) (Kavetski et al., 2006a; Kuczera et al., 
2006), the dimension of the objective function is 

proportional to the length of the calibration data. 
Consequently, long calibration periods with many 
storm events may require the optimisation of 
hundreds of latent variables. This task is 
intractable using nonsmooth methods, especially if 
multiple restarts are implemented. 
 
Finally, a more subtle flaw of current global search 
methods is their limited diagnostic capability: 
knowledge of the global optimum is insufficient if 
there are several significant local optima. 
 
There remains, therefore, a genuine need to 
develop more efficient and informative 
optimisation methods in hydrological model 
calibration. Tolson and Shoemaker (2007) pursue 
this objective using global evolutionary searches 
with dynamic dimension reduction. There are also 
promising advances in combining evolutionary 
optimisation and sampling, e.g., the hybrid SCE-
Metropolis algorithm (Vrugt et al., 2003). 
 
Our approach in this paper is more direct. It is 
motivated by the fact that Newton-type methods 
represent the most efficient class of optimisation 
methods for smooth problems and, furthermore, 
are currently the only feasible methods for high-
dimensional problems (Nocedal and Wright, 
1999). Consequently, our preference is to revisit 
the reasons why Newton-type methods have lost 
favour in hydrologic modelling (problems PI and 
PII listed earlier) and to overcome these 
difficulties. Indeed, recent studies indicate that 
Newton-type optimisation can be used for 
hydrological models, provided (i) the model is 
sufficiently smooth with respect to its parameters, 
(ii) multiple initial points are used to explore the 
objective function and identify potential multiple 
optima, and (iii) robust implementations of 
Newton-type methods are used (Kavetski et al., 
2006c; Skahill and Doherty, 2006). 
 
The objectives of this paper are as follows: 
 
(1) Summarise and illustrate the problematic 
features PI (micro-scale roughness) and PII 
(complex macro-scale geometry) of objective 
functions and how they affect their optimisation; 
 
(2) Build on the work of Kavetski et al. (2006c) 
and Skahill and Doherty (2006) and show that 
modern Newton-type optimisation strategies can 
calibrate hydrological parameters more efficiently 
and informatively than evolutionary search 
methods. This includes the ability to find the 
global optimum and efficiently diagnose multiple 
optima if they exist; 
 
(3) Demonstrate that high-dimensional BATEA 
problems, with hundreds of latent variables, can be 
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handled using Newton-type methods, provided 
micro-scale roughness is reduced or eliminated. 
Moreover, it is shown that using analytical 
derivatives of the objective function can speed up 
the optimisation by orders of magnitude or more. 

2. NEWTON-TYPE METHODS FOR 
SMOOTH FUNCTIONS 

Newton-type methods for a smooth function Φ(θ) 
are based on a sequence of steps 
 
 1
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where g  and H  approximate the gradient and 
Hessian of Φ and k is the iteration index. 

To stabilise convergence to (at least) a local 
optimum, the correction s(k+1) must be controlled 
using line searches (which ensure sufficient 
decrease of Φ along s(k+1) at each step) or trust 
regions (which modify the length and direction of 
s(k+1) based on a local model of Φ near θ(k)).  

A crucial requirement for Newton-type methods is 
the ability to meaningfully estimate the gradient of 
Φ. For sufficiently smooth functions, this can be 
accomplished analytically or using finite 
difference approximations. In addition, mature and 
reliable methods/software exist for constructing 
the approximations g  and H , for carrying out line 
searches and trust region updates, and handling 
constrained variables (Nocedal and Wright, 1999). 

If the objective function is highly nonsmooth, 
Newton-type methods break down. For such 
problems, direct search methods (e.g., simplex and 
SCE searches) are used. However, these methods 
are generally less efficient than Newton-type 
methods and their performance deteriorates rapidly 
as the dimension of the problem increases 
(Nocedal and Wright, 1999). 

3. OPTIMISATION PROBLEMS: IMPACT 
OF MODEL PROPERTIES ON THE 
OBJECTIVE FUNCTION 

We grouped calibration difficulties into categories 
PI and PII because their origins and strategies for 
overcoming them are distinctly different. 

3.1. Micro-scale roughness (PI) 

Since the (micro-scale) continuity of SS-based 
objective functions such as (1) is controlled by the 
continuity of the model h, micro-scale roughness 
of the objective function is always a consequence 
of the model structure: if the model contains non-

smooth or discontinuous constitutive relations 
(e.g., storage-discharge functions), its objective 
function will also be discontinuous (Kavetski et 
al., 2006b; Kavetski and Kuczera, 2007). 
 
Figure 3 shows the impact of model thresholds on 
the micro-structure of the objective function. It 
shows a 1D slice through the Nash-Sutcliffe 
profile of the VIC model coupled with the degree-
day snow model, calibrated to French Broad River 
data (Kavetski et al., 2006b). The solid line is the 
profile for a model implementation with a step 
threshold of the form 
 

 00  
rain

if T T
P

P otherwise
≤⎧

= ⎨
⎩

 (3) 

 
where P is the observed precipitation, Prain is the 
rainfall input into the VIC model, T is the air 
temperature and T0 is the melting-point parameter. 
 

 
 

Figure 3. Impact of threshold smoothing on the 
objective function (from Kavetski et al., 2006b). 

 
The morass of discontinuities in the objective 
function precludes the application of gradient-
based optimisation methods. 
 
PI problems can be avoided by a careful numerical 
implementation of existing models, in particular, 
replacing thresholds and discontinuities in the 
model constitutive relationships by smooth 
transitions. The dashed line in Fig 1 shows the 
profile of a smoothed model, where the step 
discontinuity (3) is replaced by the smoothed step 
 

 01 exprain
T TP P

m
−⎡ ⎤⎛ ⎞= + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (4) 

 
where m is a smoothing parameter (e.g., 0.5-2 °C), 
normally kept constant during the calibration. 
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It can be seen that removing the discontinuity 
resulted in the objective profile becoming smooth 
and amenable to Newton-type optimisation. 
Indeed, a standard quasi-Newton code required 
100-1000 function calls to optimise the model 
parameters (depending on the initial estimates), 
whereas the SCE search with comparable 
termination settings required 5,000-20,000 
function calls. This is a significant gain in 
efficiency, especially when extrapolated to more 
complex models and high-dimensional BATEA-
type calibration methodologies. 

The selection of smoothing parameters is 
discussed in more detail by Kavetski and Kuczera 
(2007): moderately oversmoothing the model is 
preferable to undersmoothing it, because model 
parameters are only weakly afffected by smoothing 
(Figure 3) and Newton-type optimisation can be 
sensitive to micro-scale roughness. In addition, a 
sequence of calibrations gradually reducing the 
degree of smoothing can be implemented (but this 
did not appear necessary in our work thus far).  

3.2. Macro-scale complexity (PII) 

Macro-scale complexity of objective functions, in 
particular, multiple parameter optima are 
particularly challenging for all optimisation 
methods and are typically cited as the chief reason 
for using expensive global evolutionary searches 
(Duan et al., 1992). Nevertheless, PII problems, 
including multioptimality, can also be overcome 
without forfeiting Newton-type methods. 
 
Note that multioptimality is sometimes an artefact 
that can be removed by numerical reformulation 
and/or smoothing of the model. For instance, even 
episodic instabilities of time stepping methods can 
cause large distortions of parameter distributions 
(including secondary optima) that can be removed 
by more stable time stepping (Kavetski et al., 
2003). Even model thresholds can cause a morass 
of spurious local optima that disappear with 
smoothing (Kavetski and Kuczera, 2007).  
 
Nevertheless, since hydrological models are 
intrinsically nonlinear in their parameters and the 
calibration data is highly uncertain (conditions that 
increase the likelihood of multiple parameter 
optima), a robust calibration strategy must be able 
to detect and deal with genuine parameter 
multioptimality. Moreover, it should have 
diagnostic capabilities beyond finding the global 
optimum and should identify and report 
statistically significant secondary optima, 
including optima lying near or on parameter 
bounds (Kavetski et al., 2006c; Skahill and 
Doherty, 2006). Ideally, it should also estimate 

parameter uncertainty (including insensitive and 
correlated parameters) that can be used in its own 
right or to initialise a more thorough Monte Carlo 
analysis. It is our view that these goals are more 
readily and efficiently accomplished using 
Newton-type methods rather than evolutionary 
strategies. 

4. MULTISTART METHODS FOR 
GLOBAL OPTIMISATION 

The simplest strategy for global optimisation is to 
apply a local optimisation method to multiple 
seeds within the search region and assume the best 
result is the global optimum. One can distinguish 
between information-sharing methods 
(evolutionary schemes, eg, SCE search) versus 
individual-sequence methods (multistart Newton), 
depending on whether individual sequences use 
global information to adapt their local searches. 

An important feature of individual-sequence 
methods is that they can report multiple optima 
found. In contrast, evolutionary schemes and 
standard simulated annealing schemes attempt to 
find the global mode directly. Early applications of 
multistart derivative-based methods in hydrology 
were problematic (Gupta and Sorooshian, 1985). 
Later, Duan et al. (1992) identified several causes 
of these difficulties, including nonsmoothness and 
multimodality, and advocated both (i) more 
sophisticated global strategies and (ii) derivative-
free searches. Subsequent literature largely 
followed these guidelines. 

Given the ability to remove micro-scale roughness 
from the surface of objective functions, and the 
advances in Newton-type optimisation algorithms, 
we revisit the global optimisation problem using 
Newton-type methods. 

There are several global strategies that can be used 
in conjunction with Newton-type methods. The 
simplest is to initiate a single Newton-type 
sequence from uniformly distributed seeds. 
Rinnooy Kan and Timmer (1987) describe more 
sophisticated approaches that attempt to avoid 
starting more than a single chain in each region of 
attraction, which they estimate using cluster 
analysis. Skahill and Doherty (2006) use a 
different approach to achieve the same objective – 
each subsequent seed is picked as being maximally 
removed from previous search trajectories. 
However, it is our view that although single-seed-
per-basin strategies may yield the highest 
efficiency in search for the global optimum, they 
forgo useful insights that can be obtained by 
uniformly seeding the search space. These insights 
are illustrated in the next section. 
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5. CASE STUDY 1: MULTISTART QUASI-
NEWTON VS SCE SEARCHES 

In an earlier study, Thyer et al. (1999) compared 
two probabilistic methods for calibrating the SFB 
model (a 6-parameter rainfall-runoff model): the 
simulated annealing method and the evolutionary-
based SCE search, with the latter proving more 
efficient and consistent. Here we revisit the 
problem using a multistart quasi-Newton (QN) 
method, with the gradient estimated using finite 
differences. The multistart strategy consisted of 
sampling initial seeds from a uniform distribution 
over the feasible parameter space, and applying the 
QN method to each seed independently. 

Figure 1 shows a 2D cross-section of the objective 
function of the SFB model calibrated to the Scott 
Creek data (Australia) (Thyer et al., 1999). The 
global mode lies on the bound SDRmax = 0.0 and 
has the objective function value of Φ = -690, and 
there is a number of secondary optima in the 
interior of the parameter domain. Figure 4 shows a 
cross-section at a different location of the 
parameter space, showing additional local optima. 
These features make the calibration a challenging 
global optimisation problem. 

Figure 5 shows a cumulative plot of the optima 
identified using multistart quasi-Newton and SCE 
searches. The results for the multistart SCE search 
agree with those previously obtained by Thyer et 
al., with the vast majority of the runs converging to 
optima with Φ ~ 700. These locations correspond 
to the triplet of optima shown in Figure 4. It can 
also be seen that only ~ 0.3% of the SCE runs 
converged to the global optimum Φ ~ 692 near the 
boundary of the parameter space. 

The application of the multistart Newton method 
led to significantly different results. Due to the 
multioptimality of the problem, the Newton runs 
terminate in many different locations of the 
parameter space: 30% of the optima had Φ > 720 
(whereas all SCE runs terminated in better 
optima). However, 15% of the quasi-Newton 
sequences converged to the global mode located 
on the boundary, which proved very elusive for the 
SCE search. Another 40% of the runs converged to 
the Φ ~ 700 optima. 

Figure 2 compares the computational cost of the 
methods. It shows that the quasi-Newton 
sequences required far fewer function evaluations 
than the SCE search – most runs terminated after 
500-1000 function calls, whereas the majority of 
SCE searches required 5000-8000 function calls. It 
is also noted that there was no special relation 
between the computational cost and the specific 

optima found – in some runs the global mode was 
found in fewer than average number of runs, in 
others it took more than average. 

In addition to simply locating the global optimum, 
it is important that the optimisation method yield 
additional insight into the structure of the 
parameter distribution. The multistart Newton can 
generate at least two such insights: (i) local 
structure: the Hessian matrix computed during 
Newton-type optimisation can be used to 
approximate the covariance structure of the 
parameter distribution and (ii) global structure: the 
relative fractions of initial seeds yielding 
convergence to various local optima can be used to 
estimate the relative sizes of the regions of 
attraction, and hence the probability mass 
associated with each optimum. 

The latter insight effectively uses the multistart 
framework as a hit-or-miss Monte Carlo method to 
estimate the volume of regions of attraction. 
Notably, such information can not be obtained 
from global methods such as the SCE search, since 
the information about the distinct regions of 
attraction is lost in the shuffling of simplex 
vertices (which, somewhat ironically, is one of the 
major strengths of the method as a global 
optimiser). 

 

Figure 4. Triplet of local optima in a region of the 
parameter space adjacent to the interior mode 

(SDRmax ~ 4, C ~ 1.0) in Figure 1. 

The knowledge of the approximate distribution of 
optima and their local covariance structure can be 
used to construct more efficient Monte Carlo 
samplers. For example, more efficient 
“hierarchical” importance samplers can be 
developed by first sampling a mode according to 
the approximate probability mass of each modal 
region, and then using the covariance structure for 
local Gaussian importance sampling. 

2517



 Page 6 

 

Figure 5. Distribution of optima computed using 
multistart quasi-Newton and SCE methods. 

6. BATEA OPTIMISATION USING 
NEWTON-TYPE METHODS 

Bayesian total error analysis (BATEA) is a 
calibration methodology that seeks to explicitly 
formulate and parameterise models of data 
uncertainty and model structural error (Kavetski et 
al., 2006a; Kuczera et al., 2006). For example, 
rainfall uncertainty can be parameterised using 
storm multipliers (latent variables). A Bayesian 
hierarchical strategy is then used to infer both the 
model parameters and latent variables. As a result, 
BATEA calibrations are computational expensive, 
since, eg., for a 100-storm time series, at least 100 
storm multipliers need to be calibrated, as well as 
the model parameters themselves. In addition, 
BATEA assumes that the structural error of 
hydrological models can be described by stochastic 
variation of one or more model parameters over 
storm-event time-scales.  This further increases the 
dimensionality of the calibration problem. 

Despite the high-dimensionality of BATEA 
calibrations, the parameter distributions can be 
sampled using Markov Chain Monte Carlo 
methods such as Gibbs or Metropolis samplers 
(see Kuczera et al., 2007). However, it is 
beneficial to pre-optimise the model parameters 
and latent variables to prevent the Markov chains 
from being trapped far from high-probability 
regions of the parameter distribution. 

The high-dimensionality of BATEA objective 
functions precludes its optimisation using 
nonsmooth methods such as the SCE search. 
Consequently, we use quasi-Newton methods to 
pre-optimise the BATEA latent variables and 
model parameters. In addition, it remains 
important to diagnose whether the objective 
function is multioptimal, mandating the use of the 
multistart framework. 

An additional challenge of high-dimensional 
optimisation using quasi-Newton methods is the 
estimation of the gradient of the objective function. 
If this is accomplished using finite difference 
methods, each component of the gradient requires 
at least one function call, making the optimisation 
progressively expensive. 

The alternative is analytical differentiation of the 
objective function. While this can be tedious for 
complex models, the efficiency gains when 
optimising using analytical gradients can be 
spectacular. Table 1 shows a comparison of the 
cost of optimising BATEA objective functions 
using quasi-Newton methods with finite difference 
derivatives vs analytical derivatives. The 
hydrological model in this case study is a 2-store 
model with linear storage-discharge relationship. 1 
year of data was used in the analysis, requiring the 
calibration of 71 latent variables and parameters. 

Table 1. Computational cost of optimisng  
BATEA objective functions using quasi-Newton 
methods with/without analytical derivatives. 
 

Method      Function calls   Scaled CPU time 

FD-gradient 154027 15.8 
Analytical 1085 1 

Table 1 shows that (i)  Newton-type methods can 
sucesfully optimise high-dimensional BATEA-
type objective functions with more than a hundred 
latent variables, (ii) Analytical derivatives lead to a 
dramatic reduction in the number of function calls 
for optimisation, especially as the dimenson of the 
problem increases and (iii) the gains in CPU time 
are balanced by the cost of evaluating analytical 
derivatives, but remain significantly lower than 
with finite difference gradients. 

A limitation of using analytical derivatives is the 
difficulty in differentiating the model equations. 
Indeed, for many models this is too tedius and may 
require significant code modifications. However, 
for cases where this can be accomplished, Newton 
optimisation with analytical gradients permits 
hitherto prohibitive analysis of parameter 
distributions accounting for data and model error. 

7. CONCLUSIONS 

Efficient calibration of conceptual hydrological 
models has traditionally been impeded by complex 
micro- and macro- structure of objective functions. 
Although earlier approaches favoured nonsmooth 
global optimisation such as the SCE method, 
recent work began addressing these difficulties 
using multistart Newton-type methods. This paper 
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overviews the origins of complexity of objective 
functions and how they can be tackled using 
numerical smoothing/reformulation of the model. 
This opens several avenues for more systematic 
analysis of parameter distributions, in particular, 
using multistart Newton-type methods. This paper 
makes several contributions in this direction. 
Firstly, we supply case studies where Newton-type 
methods comfortably and consistently outperform 
global SCE searches. Secondly, it is argued that 
designing multistart strategies to avoid seeding a 
single attraction region with multiple seeds (to 
prevent convergence to the same optimum and 
thus boost efficiency) can yield less insight into 
the macro-structure of the distribution (the relative 
sizes of attraction basins associated with multiple 
optima). Finally, it is shown that analytical model 
derivatives, in combination with numerically 
smooth model formulations, can significantly 
improve the computational efficiency and 
reliability of the model calibration, especially for 
high-dimensional calibration problems such as 
those arising in Bayesian hierarchical models of 
data and model uncertainty. 
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