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EXTENDED ABSTRACT 

The relationship between magnitude and the 
annual recurrence interval of a low flow variable 
can be expressed using a Low Flow Frequency 
Curve (LFFC). The goal of frequency analysis is to 
estimate accurately the quantiles of the distribution 
of a random variable.  As many researchers; for 
instance Velz and Gannon (1953), Institute of 
Hydrology (1980), McMahon and Diaz (1982), 
Tollow (1987), Nathan and McMahon (1990) and 
Durrans (1996) have noticed, there can be 
situations where high low flows which occur 
frequently do not always follow the same trend as 
the remainder of the observed series.  In such 
situations, a commonly used single distribution 
cannot provide a good fit over the entire range of 
the sample. In low flow studies the less frequent 
flows are of primary interest. Hewa et al (2007) 
demonstrated how Generalised Extreme Value 
(GEV) distribution fitted by the LH-moments can 
be used to avoid the undue influence that more 
frequent observations can cause on less frequent 
observations of a minima series. LH-moments 
(Wang, 1997) are a generalization of L-moments 
(Hosking 1990). The first three orders of LH-
moments at h= 0, 1 and 2 are named as L-
moments, L1-moments and L2-moments 
respectively (Wang, 1997).  

The aim of this study was to investigate how 
significant is the BIAS (Equation 1) of low flow 
quantiles estimated by the GEV/LH-moment at 
different orders of LH-moments. Two orders of 
LH-moments; L-moments and L2-moments were 
selected for the comparison.  In this study, annual 
minimum 7–day flow volume (named as 7-day 
minima series) series of 84 selected catchments 
from Victoria were used for the analysis. Two at-
site estimates of the 7-day 10-yr low flow quantile 
were made by fitting the GEV distribution using 
L-moments and L2-moments respectively. Monte 
Carlo simulation was used to estimate the average 
BIAS of the quantile estimates.  

As can be observed in Figure 1, the 7-day minima 
series of station 222202 follows a single trend 
whereas station 228206 exhibits two different 
trends, one for the high flow portion and another 
for the low flow portion.  
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Figure 1. Trends of observed minima series for 
two sites in Victoria, Australia. 
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Figure 2. Dimensionless BIAS of low flow 
quantile estimates made by using L-moments and 

L2-moments for the Station 228206.  

It is clear from the results shown in Figure 2 that 
when low flows and frequent high flows are not 
derived from a single distribution function, the 
effect of BIAS on L-moment quantile estimates 
was significantly greater compared to the BIAS of 
L2-moment quantile estimates. 

2500



1. INTRODUCTION 

A low flow frequency estimate indicates the 
annual probability of non-exceedance of a low 
flow event of specified magnitude. The 
relationship between magnitude and the annual 
recurrence interval of a low flow variable can be 
expressed using a Low Flow Frequency Curve 
(LFFC). The goal of frequency analysis is to 
estimate accurately the quantiles of the distribution 
of a random variable.  

Fitting a probability distribution function to 
observed data provides a compact and smoothed 
representation of the frequency distribution 
revealed by the available data, and leads to a 
systematic procedure for extrapolation to 
frequencies beyond the range of the data set 
(Stedinger et al., 1992). The uncertainties in the 
extrapolation are significant and depend on how 
well the data constrain the possible formulation to 
the adopted distribution function. Hence, 
parameters for the selected distribution function 
need to be estimated using an appropriate method 
so that extrapolation of required quantiles and 
expectations are reliable.   

The usual practice of estimating parameters is to 
equate estimates of the first two or three sample 
moments (central tendency, spread and symmetry) 
to the theoretical moments of the distribution 
function. The most efficient estimate of a 
parameter is defined as the estimate which has the 
minimum variance. There are a number of 
techniques that can be used for estimating the 
parameters of a distribution function, including the 
Method of Moment (MOM), the method of 
Maximum Likelihood (ML) and the method of 
Probability Weighted Moments (PWM). These 
methods have been widely used and their 
performance compared (Fischer, 1929; Matalas, 
1963; Wallis et al., 1974; Vogel and Fennessey, 
1993;  Nathan and McMahon, 1990 and Wang, 
1996)  

A more recent and superior method, based on a 
linear combination of order statistics, known as L-
moments (Hosking, 1990) is now available. The L-
moments method is nearly unbiased relative to the 
other estimation methods. Wang (1997) introduced 
LH-moments, which is a generalization of L-
moments for estimating extreme floods. LH-
moments was proved to be superior to other 
estimation methods in avoiding undue influence 
that more frequent observations can cause on less 
frequent observations.  Recently, Hewa et al. 
(2007) demonstrated how the LH-moments can be 
used in low flow frequency analyses.  

The aim of this study is to investigate how 
significant is the BIAS of low flow quantiles 
estimated by L-moments and L2-moments. In this 
study, the GEV distribution is used to estimate low 
flow quantiles for 84 selected catchments from 
Victoria and the BIAS of the estimated quantiles 
by the two methods (L-moment and L2-moments) 
is quantified through Monte Carlo simulation. 

1.1. Fitting a distribution function to a 
minima series 

There are a number of probability distributions that 
have been suggested as being suitable for 
modelling low flows. The most commonly used 
distribution functions in low flow frequency 
analysis are the Normal, Log-Normal, Gamma, 
Log-Pearson Type III, Extreme Value Type I 
(Gumbel) and Extreme Value Type III (Weibull). 
Matalas (1963) and Eratakulan (1970) found the 
Weibull and Pearson Type III alternatives perform 
well over a range of skewness values, although 
O'Conner (1964) and Vogel and Kroll (1989) 
indicated preferences for the Log-Normal choice 
for their study area. Nathan and McMahon (1990) 
and Durrans (1996) used Weibull models for 
censored low flow data. In fitting a distribution to 
the annual minima series it is assumed that the 
sample considered represents the low flow 
extremes of observed streamflows, and thus the 
usual practice is to fit a suitable probability 
distribution function to all the observed minima of 
the required duration.  

Nevertheless as can be seen in Figure 1, high low 
flows which occur frequently are not always 
derived from the same probability distribution as 
the remaining observations. This has been 
observed by many researchers; for instance Velz 
and Gannon (1953), Institute of Hydrology (1980), 
McMahon and Diaz (1982), Tollow (1987), 
Nathan and McMahon (1990) and Durrans (1996). 
According to McMahon and Diaz (1982), the 
break in the low flow frequency curve shows the 
point where the higher frequency flows are no 
longer drought flows but rather are flows 
approaching normal conditions.  

In low flow studies the less frequent flows are of 
primary interest. When model parameter 
estimation is performed on the basis of the entire 
data sample, it can lead to a deterioration of the 
statistical properties (Durrans, 1996). When the 
largest low flow appears to deviate appreciably 
from the second largest low flow, it results in a 
large skewness, which in turn, can lead to a 
theoretical distribution underestimating the 
severity of the extreme droughts (Matalas, 1963). 
Nathan and McMahon (1990) indicated that certain 
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low flow quantile estimates were usually affected 
by up to 22% when large data values were retained 
in the analysis. Similar observations have been 
made in the context of flood frequency analysis, 
where the presence of low flow data values can 
exhibit adverse effects (Klemes, 1986). Hence, 
estimation should be concentrated on the less 
frequent observations of the sample. The most 
common practice in dealing with this is to censor 
the data series at the break point and fit a 
distribution function to the remainder. 

Many researchers, for instance Gilliom and Helsel 
(1986), Helsel and Gilliom (1986) and Kroll and 
Stedinger (1996) investigated various estimation 
methods such as Log Probability Plot Regression 
(LPPR), Log-Normal Maximum Likelihood (LN-
ML) and Log-Normal Partial Probability Weighted 
Moments (LN-PPWM) for censored data samples. 
Recently, Hewa et al. (2007) demonstrated the 
capability of the Generalised Extreme Value 
distribution, fitted by LH-moments, for giving 
more emphasis to the less frequent observation, 
without practically censoring the data sample.  

1.2.   GEV distribution and LH-moments 

According to Hosking (1990) and Wang (1997), L-
moments and LH-moments are linear functions of 
PWMs and LH-moments are equivalent to higher 
order PWMs. Detailed discussion of the GEV 
distribution function, its parameters as well as 
estimation using LH-moments of a minima series 
through PWMs are presented in Hewa et al. 
(2007). 

2. STUDY AREA AND DATA 

The catchments selected for this study are from 
Victoria, Australia. They are within two drainage 
divisions: South East Coast and Murray-Darling. A 
total of 84 catchments from 30 drainage basins in 
these two divisions are used. The geographical 
distribution of the selected catchments and the 
main criteria used to select those catchments from 
the drainage divisions are given in Hewa et al. 
(2007). 

3. METHODOLOGY 

The BIAS of a low flow quantile estimate ( $θ ) in 
Equation 1 is a measure of the average error in the 
estimate from the population value and is used to 
compare the reliability of quantile estimates made 
by the two methods. 

( ) [ ]θθθ −= ˆˆ EBIAS     (1)                                                                                         

where θ is the population value of θ̂   

In this study, the GEV is assumed to be the parent 
distribution. For each of the 84 selected 
catchments, the average BIAS of a range of 
quantiles is estimated from 10,000 simulated 
samples by using L-moments and L2-moments. 
The steps in the Monte Carlo Simulation are as 
follows: 

1. Fit the GEV to the observed minima 
series using L2-moments and estimate the 
low flow quantiles for the Average 
Recurrence Intervals of interest (ARIs) of 
interest. 

2. Assume that the estimated GEV 
parameters are the population values. 

3. Using a random number generator, 
generate a GEV distributed sample of 
length n, where n is the length of the 
observed minima series in step 1, using 
the GEV population parameters of step 2. 

4. Fit the GEV distribution to the generated 
sample using L2-moments. 

5. Estimate low flow quantiles for the same 
ARI’s of step 1. 

6. Repeat steps 3 to 5 for N times, where N 
is number of simulations (in this paper N 
=10,000). 

7. Estimate the BIAS of the low flow 
quantiles, by taking the quantile estimates 
in step1 as the population values. 

8. Repeat the procedure from step 1 to step 7 
for L-moments  

4. RESULTS AND DISCUSSION 

Absolute BIAS is expressed as Ml/km2 (= mm). 
Figure 3 presents the number of catchments at 
which the BIAS of a quantile estimate for one 
method is smaller than that of the other estimation 
method. 

It can be observed in Figure 3 that the larger the 
annual recurrence interval the greater the number 
of catchments for which absolute BIAS of L2-
moments estimates is smaller than that of the L-
moments estimates. This suggests that, on average, 
L2-moments estimates of low flow quantiles (7-
day series) at large annual recurrence intervals are 
more reliable than that of the L-moments 
estimates.  
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Figure 3. Comparing the number of catchments 
with smaller absolute BIAS of quantiles estimated 
via L-moments method and L2-moments method 

Having noticed that the majority of the L2-
moments estimates are with less BIAS than L-
moments estimates, it was decided to investigate 
how the BIAS varies at varying ARIs 

Figures 2 and 4 compare the dimensionless BIAS 
(BIAS divided by the mean daily flow of the 
station) estimates of the low flow quantiles made 
using the L-moment and L2-moment methods for 
two sample stations 228206 and 222202 presented 
in Figure 1. The difference is greater for Station 
228206 in which more frequent and less frequent 
observations had two different trends. These 
observations suggests that, L2-moments is capable 
of giving more emphasis towards the less frequent 
observations when extreme low flows are derived 
from a different distribution to that of the more 
frequent observations.  
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Figure 4. Dimensionless BIAS of low flow 
quantile estimates made by using L-moments and 

L2-moments for the Station 222202 

Though, it was evident that L2-moment estimates 
in general have smaller BIAS when compared to L-
moment estimates, it was interesting to see how 
significant the effect of this BIAS on mean quantile 
estimates. Therefore, how significant is the effect 
of absolute BIAS on the low flow quantile is 
further investigated by using the Station 228206 in 
whish observed minima series had more than one 
trend. The results are presented in Figure 5 and 6. 

QARI is the true low flow quantile at the average 
recurrence interval (ARI) of interest while Qm is 
the mean quantile estimate at the same ARI.  
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Figure 5.  Effect of BIAS on mean quantile 
estimates made by the L-moments method for the 

Station 228206 

0.00

0.20

0.40

0.60

0.80

1.00

2 5 10 20 50 100

ARI

m
m

BIAS

Qari

Qm

 

Figure 6.  Effect of BIAS on mean quantile 
estimates made by the L2-moments method for the 

Station 228206 

It can be observed from Figures 5 and 6 that the 
effect of BIAS on Qm of the L2-moment method is 
negligible, while that of the L-moment method 
makes a difference at large annual recurrence 
intervals. Hence, when more frequent observations 
are not derived from the same distribution as the 
less frequent observations, the L2-moment method 
is capable of reducing undue influence of more 
frequent events in estimating low flow quantiles at 
large annual recurrence intervals. Consequently, 
L2-moment estimates of low flow quantiles at 
large annual recurrence intervals are more reliable 
than the L-moments estimates. 

5. CONCLUSIONS 

BIAS of L-moment estimates in general is greater 
than that of L2-moment estimates. When the more 
frequent and less frequent observations follow two 
different trends, the BIAS of L-moment estimates 
is significantly greater at high ARIs as opposed to 
that of L2-moment estimates. The ability of LH-
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moments to give more emphasis to less frequent 
observations in minima series helped to make 
more reliable low flow quantiles at higher average 
recurrence intervals. The benefit of LH-moments 
is greater when the less frequent and high frequent 
low flows follow different trends (eg. Station 
228206 in Figure 1).  
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