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EXTENDED ABSTRACT 

Calibration and prediction in conceptual rainfall-
runoff (CRR) modelling is affected by the 
sampling and measurement uncertainty in the 
forcing/response data and by the structural error of 
the model conceptualisation. The Bayesian Total 
Error Analysis methodology (BATEA) offers a 
robust approach to deal with these multiple sources 
of uncertainty. The core idea is to pose the model 
calibration as a Bayesian hierarchical model with 
latent variables describing uncertainties in the data 
and the CRR model. This provides the opportunity 
to directly and comprehensively address all 
sources of uncertainty.  

One objective of a BATEA analysis is to evaluate 
the posterior distribution of the model parameters 
and latent variables. This study reports on the 
application of Markov chain Monte Carlo 
(MCMC) approaches for sampling from the 
posterior distribution. The primary focus is the 
Gibbs sampler, traditionally the method of choice 
for hierarchical models because of its ease and 
robustness in handling hundreds, possibly 
thousands, of latent variables. However, in the case 
of CRR models with carryover of storage (in soil 
and groundwater stores) from one interval to the 
next, the Gibbs sampler rapidly becomes 
computationally intractable.  

A full derivation of the Gibbs sampler is presented. 
It is shown that rigorous implementation of the 
Gibbs sampler in the presence of storage carryover 
involves a computational effort proportional to n2 
where n is the number of rainfall latent variables. 
Even for moderate n, the problem rapidly becomes 
intractable. A heuristic approximation that exploits 
the diminishing influence of initial conditions in 
the CRR model is presented to render the 

computational effort much closer to n. A case 
study shows that the heuristic Gibbs sampler 
produces a posterior distribution virtually 
indistinguishable from the posterior produced by 
the exact sampler. However, unlike the exact 
Gibbs sampler, the heuristic sampler is 
computationally efficient with effort proportional 
to the number of rainfall latent variables – see 
Figure 1. This result is of significance because it 
makes practical full analysis of CRR models with 
a large number of latent variables.  
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Figure 1. CPU time needed to simulate 1000 
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1. INTRODUCTION 

Catchment models simulate water balance 
dynamics at the catchment scale. Because of the 
significance of water in terrestrial ecosystems, 
catchment models are an integral part of virtually 
all environmental models formulated at the 
catchment scale and their applications range from 
catchment water and nutrient balances to 
biophysical models. This paper focuses on 
conceptual rainfall-runoff (CRR) models. An 
important, perhaps defining, feature of CRR 
models is that their parameters are not directly 
measurable and must be inferred (“calibrated") 
from the observed data. The advantage of this class 
of models is its ability to capture the dominant 
catchment dynamics while remaining 
parsimonious and computationally efficient. 

Characterising the uncertainty in streamflow 
predicted by a CRR model has attracted the 
attention of hydrologists over many years. Yet in a 
recent review of CRR model calibration, Vrugt et 
al. (2005) note the lack of a robust framework that 
accounts for all sources of error (input, model and 
response error). This has a number of implications 
for CRR modelling: (i) quantifying the predictive 
uncertainty in streamflow and other model outputs 
is problematic; (ii) the regionalisation of CRR 
model parameters continues to be confounded by 
biases in the calibrated parameters and unreliable 
assessment of parameter uncertainty; and (iii) it is 
difficult to discriminate between competing CRR 
model hypotheses because poor model 
performance can “hide” behind the veil of 
ignorance about the sources of error. 

Recently Kavetski et al. (2002, 2006a,b) and 
Kuczera et al. (2006) developed and illustrated a 
Bayesian total error analysis (BATEA) framework 
which discriminates between input, model and 
response errors. The key idea in the BATEA 
approach is to formulate the CRR model as a 
hierarchical model. This allows input and model 
errors to be treated as latent variables and enables 
exploitation of recent developments in Monte 
Carlo Markov chain (MCMC) methods.  

The inclusion of latent variables introduces 
hundreds, possibly thousands, of variables 
requiring inference. Though counter intuitive, 
these latent variables do not overparameterize the 
model. Indeed hierarchical models involving large 
numbers of latent variables are routinely and 
efficiently solved using the Gibbs sampler (Chib 
and Greenberg, 1995) and public domain software 
BUGS (Gilks et al., 1994). However, in the case of 
CRR models with carryover of storage (in soil and 

groundwater stores) from one interval to the next, 
the Gibbs sampler rapidly becomes 
computationally intractable. 

The purpose of this paper is to carefully derive the 
Gibbs sampler for CRR models and then to 
develop approximations which restore its 
computational tractability without compromising 
the reliability of the inference. 

2. AN OVERVIEW OF THE BATEA 
FRAMEWORK 

Figure 2 presents a schematic of the BATEA 
hierarchical model. Without loss of generality, 
suppose a hydrologic time series is partitioned into 
n epochs {(ti, ti+1-1), i=1,..,n} where ti is the time 
step index corresponding to the beginning of the ith 
epoch. The definition of an epoch is flexible. In the 
case of a CRR model, one reasonable epoch 
definition begins with a storm event and ends with 
a dry spell exceeding a minimum duration 
(Kuczera et al., 2006). The observed response time 
series for the ith epoch is }1t,..,tt,~{~

1iiti −== +qq , 
whereas qi is the true response time series for the 
ith epoch. The vectors i

~x and xi contain the 
observed and true forcing time series respectively 
for the ith epoch.  

The BATEA hypothesis of Kavetski et al. (2006a) 
assumes a function ),~(g i iφx that maps the 
observed forcing ix~  into the true forcing xi. The 
function g() accounts for the sampling and 
measurement error in the observed forcing. For 
example, Kavetski et al. (2006a) considered the 
special case of ϕi being a storm depth multiplier 
scalar, which yields the mapping iii xx ~φ= . The 
latent variable ϕi is assumed to vary from storm to 
storm and be a random realisation from the 
probability model with pdf p(ϕ |α)  

ϕi  ← p(ϕ |α) (1) 

 INPUT ERROR 
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Figure 2. Schematic of the hierarchical BATEA 
model. 
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where α is a vector of parameters describing the 
statistical properties of the input errors (e.g., the 
mean and variance of the multipliers). 

Next it is assumed that for each epoch there exists 
a CRR model ),,,( iiih sωθx  that maps the true 
forcing xi into the true response q  

),,,( iiii h sωθxq ←  (2) 

where ω are the time-invariant CRR parameters, s 
is the vector of variables that represent storage 
(such as groundwater, soil moisture and stream 
storage) within the CRR model at the start of the 
epoch, and θi is a set of epoch-specific CRR model 
parameters drawn from the hyper-distribution 
p(θ|β) 

θi  ← p(θ|β) (3) 

where β are the CRR hyper-parameters (e.g., 
means and variances of the parameters). The 
epoch-dependent parameters are treated as latent 
(or hidden) variables in the same way as the input 
multipliers.  

The storage vector is updated as follows 

),,,(1 iiii f sωθxs ←+  (4) 

This update is deterministic because conservation 
of mass applies to each storage element. 

The observed response is corrupted by 
measurement error and is assumed to be 
distributed according to 

  ),|~(p~
ii γqqq ←  (5) 

which is conditioned on the true discharge q and 
the parameter set γ that characterises the error 
process. 

The hierarchical BATEA model is atypical of 
Bayesian hierarchical models, since the sampling 
of the true response q is not independent of earlier 
epochs. This complication arises because the time 
memory of CRR models induces a dependence 
between epochs: epoch-dependent parameters can  
affect model responses well beyond the current 
epoch. This dependence requires careful attention 
and precludes routine application of Bayesian 
hierarchical model packages. 

2.1. BATEA Inference Problem 

The primary objective of BATEA is to identify the 

parameters α, β, ω and γ given the observed 
streamflow time series data },..,1,~{~ nii == qQ , the 

observed forcing time series },..,1,~{~ nii == xX  and 
any prior information. In the Bayesian framework 
this inference problem is described by the posterior 
pdf 

n:1n:1n:1n:1 dd)~,~|,,,,,p(

)~,~|,,,p(

φθXQφθγωβα

XQγωβα

∫=

=
 (6) 

where )~,~|,,,,,(p n:1n:1 XQφθγωβα  is the full 
posterior pdf, },...,{ 1:1 nn θθθ =  contains the sets of 
epoch-dependent CRR parameter realisations for 
all the storms, and },...,{ 1:1 nn φφφ = . Direct 
evaluation of this integral is formidable due to its 
high dimensionality and strong nonlinearity. 

Following Kavetski et al. (2002), it is 
advantageous (both statistically and 
computationally) to work directly with the full 
posterior probability distribution function (pdf). 
Inferring the latent variables enables one to test 
assumptions about hyperdistributions. This is 
vitally important because hypotheses about model 
structure and errors must be subject to empirical 
scrutiny. Moreover, the Gibbs sampler provides an 
elegant MCMC procedure for approximating the 
full posterior.  

Before we consider the Gibbs sampler in detail the 
following changes are made to simplify the 
notation: 
1. Since the latent variables of the input and 

structural error models are both associated 
with epochs, they are combined into θ, the set 
of epoch-dependent parameters or latent 
variables, with hyper-parameters β. 

2. The response measurement error parameters 
γ are assumed to be known. In the case of 
streamflow, this is a reasonable assumption 
for a well-maintained gauging station. 

These changes yield the following posterior pdf: 

)(p)(p)|(p),~,,|~(p

),~,~(p
),~|,(p),~,,|(p),~,,|~(p

),~,~(p
),~,,,(p),~,,,|~(p

),~,~|,,(p

n:1n:1

n:1n:1

n:1n:1

n:1

ωββθγXθωQ

γXQ
γXωβγXωβθγXθωQ

γXQ
γXθωβγXθωβQ

γXQθωβ

∝

=

=

 (7) 
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where ),~,,|~(p n:1 γXθωQ  is the likelihood function 

(sampling distribution) of Q~  which, according to 
Figure 2, is independent from β, )|(p n:1 βθ is the 
hyper-distribution of θ1:n which only depends on β, 
and p(ω) and p(β) are prior pdfs. 

3. GIBBS SAMPLER 

The Metropolis-Hastings (MH) algorithm is a 
general MCMC procedure for sampling from 
multivariate distributions. Suppose p(θ) is the 
target distribution, the full posterior in this study, 
from which samples are required. The algorithm 
proceeds as follows (Chib and Greenberg, 1995): 

Step 1: Initialize θ with a suitable starting value 
θ0. Set iteration counter t = 0. 

Step 2: Sample a proposal vector θ* from a 
proposal or jump distribution with pdf J(θ|θt) 
where θt is the value of the vector θ at the tth 
iteration. 

Step 3:  Evaluate the move ratio 

( ) ( ) ( )
( ) ( )

* *
*

*

t
t

t t

p J
r

p J
=

θ θ θ
θ θ

θ θ θ
 (8) 

Step 4:  Sample u from the uniform distribution 
U(0,1) 

 If  u < r(θ* |θt)  then θt+1 = θ*,  

 else θt+1 = θt 

Step 5:  Increment t. Check for convergence. If 
not converged go to step 1. 

It is our experience with MH algorithms that the 
selection of the jump distribution, especially its 
covariance, is particularly important if the 
algorithm is to converge. In BATEA, the problem 
is made more challenging because the dimension 
of the jump distribution will grow with the number 
of latent variables. 

We seek to avoid potential problems with high-
dimensioned jump distributions by exploiting the 
hierarchical nature of the BATEA hypothesis in 
conjunction with block or alternating conditional 
MCMC sampling. 

Chib and Greenberg (1995) provide a lucid 
exposition on block MCMC sampling which we 
will refer to as the Gibbs sampler. The hierarchical 
nature of the BATEA formulation shown in Figure 

2 suggests the following three-block sampling 
approach. For the tth iteration of the sampler the 
following three steps are performed: 

Step 1: Sample β from its conditional posterior 
distribution )~,~,,|( :1

1 XQωθββ tt
n

t p←+  

The hierarchical dependence shown in Figure 2 
enables the following simplification  

)|()~,~,,|( :1:1 n
t

n pp θβXQωθβ =  (9) 

For hyper pdfs of the Gaussian form, the posterior 
pdf p(β|θ1:n) is well known and can be directly 
sampled from (see Gelman et al., 1995). Strictly 
speaking, when one can directly sample from the 
conditional posterior this is known as the Gibbs 
sampler. 

Step 2: Sample θ1:n from its conditional posterior 
distribution )~,~,,|( 1

:1
1

:1 XQωβθθ tt
n

t
n p ++ ←  where 

 1:

1: 1:

( | , , , )

( | , , ) ( | )
( | , , )

n

n n

p

p p
p

=

θ β ω Q X

Q θ ω X θ β
Q β ω X

% %

% %

% %

 (10) 

Step 3: Sample ω from its conditional posterior 
distribution )~,~,,|( 1

:1
1 XQθβωω ++← t

n
tt p where 

)~,,|~(
)()~,,|~(

)~,,,~|(
:1

:1
:1 XβθQ

ωXθωQ
XβθQω

n

n
n p

pp
p =  (11) 

3.1. Epoch Block Metropolis-Hastings 
Sampler 

It is highly unlikely that direct sampling of θ1:n 
from the conditional posterior in Step 2 is possible. 
In such cases a MH sampler will be required.  

Since the latent variables θ are sampled at the start 
of each epoch it is natural to employ a block 
sampling scheme based on epochs. For the jth 
epoch and the tth iteration of the Gibbs sampler the 
objective is to sample from the conditional 
posterior 

)~,~,,,,|( 1
:1

1
1:1

1 XQωβθθθθ ttt
nj

t
jj

t
j p +

+
+

−
+ ←  (12) 

Exploiting the independence of the latent 
variables, the MH move ratio can be simplified to 
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3.2. Computation of Move Ratio  

Evaluation of the move ratio (13) can be 
computationally very expensive. To see this it is 
best to expand the ratio of the likelihoods in the 
move ratio. For simplicity it is assumed that 
streamflow measurement error is Gaussian with 
mean ),,,( kkkh sωθx  and variance 2

qσ . The pdf 
for the kth observed streamflow is expressed using 
the shorthand notation )),,,,(|~( 2

qkkkk hN σsωθxq . 
The likelihood ratio thus becomes 

∏
+=

+
+

−

+
+

−

×

=

n

jk qk
tt

kkk

qk
tt

kkk
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tt

jjj
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jjj
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t
j

t
j
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 (14) 

When there is no storage carryover [that is, h() is 
independent of the storage], the ratio of the 
likelihoods simplifies to  

)),,,,(|~(

)),,,,(|~(

)~,,,,|~(

)~,,,,|~(

2

2*

:1
1

1:1

:1
*1

1:1

qj
tt

jjj

qj
t

jjj

tt
nj

t
j

t
j

tt
njj

t
j

hN

hN

p

p

σ

σ

sωθxq

sωθxq

XωθθθQ

XωθθθQ

=

+
+

−

+
+

−

 (15) 

However, when there is carryover storage the 
second term in the likelihood ratio is no longer 
necessarily equal to one. This is because at the end 
of epoch j, the carryover storage to epoch j+1 will 
be different because the proposed latent variable 

*
jθ  differs from the previously accepted latent 

variable t
jθ ; that is, 

),,,(

),,,(

1

**
1

j
tt

jj
t
j

j
t

jjj

f

f

sωθxs

sωθxs

=≠

=

+

+
 (16) 

The likelihood ratios given by equations (14) and 
(15) have very different computational demands. 
In the case of equation (15), two likelihood 
evaluations are necessary for each epoch yielding a 
total of 2n likelihood evaluations per iteration 
where n is the number of epochs. In the case of 
equation (14) which accounts for storage 
carryover, 2(n − j + 1) likelihood evaluations are 
required at the jth epoch. Over n epochs this 
amounts to n(n+1) likelihood evaluations! One 
would expect computational demands to become 
unmanageable even for calibrations involving only 
a few years of data and several hundred latent 
variables. 

There are two ways to improve the computational 
efficiency of the Gibbs sampler: 
1. Ignore the storage carryover. We will see this 

produces significant error in the posterior. 
2. Monitor the ratio of the carryover likelihoods 

in equation (14) and use a heuristic rule to 
terminate the computation. The key idea is to 
exploit the fact that the effect of the different 
latent variables at epoch j will gradually 
diminish as the CRR model “forgets” the 
differences in the initial conditions expressed 
by equation (16). In this study a simple 
termination criterion is used, namely terminate 
when the log of the current ratio is less than 
some tolerance (0.001 in this study). 

4. COMAPRISON OF SAMPLER 
PERFORMANCE 

This section compares three different Gibbs 
samplers using the three-block structure described 
in Section 3: 1) Full carryover using equation (14); 
2) No carryover using equation (15); and Heuristic 
carryover. Starting values for the Gibbs sampler 
were chosen as prior means. Within each block, 
the Gibbs sampler was implemented one variable 
at a time. Univariate Gaussian proposals were 
adaptively determined during the burn-in run.  

The Gibbs sampler is also compared against a one-
block MH sampler. In this case the Gaussian 
proposal is multivariate with high dimension 
owing to the presence of latent variables. The 
proposal covariance is computed using the results 
of the Gibbs sampler. Nonetheless, the one-block 
MH sampler represents the most efficient sampler 
in terms of computational effort and thus provides 
a benchmark by which to judge the Gibbs sampler 
performance. 

To make the comparison meaningful a synthetic 
case study is performed so the MCMC sampler 
results can be compared against the true value of 
parameters. The case study is described fully in 
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Kuczera et al. (2006) and Renard et al. (2007). A 
time series of 366 daily rainfall and potential 
evapotranspiration for the Abercrombie catchment, 
NSW with area 2770 km2 was used. These series 
define the ‘true’ input data. The logSPM CRR 
model (described in Kuczera et al., 2006) was used 
to simulate daily streamflow discharge using 
known parameters. The true streamflow is 
corrupted with independent normally distributed 
measurement error. Likewise the rainfall time 
series were corrupted by error multipliers drawn 
from a log-normal distribution 

)0.20.2,N(mlog 2−←e  (17) 

Figure 3 presents the posterior distributions 
derived using the four MCMC samplers for the 
CRR parameter logesK, one of the rainfall 
multipliers and mean and standard deviation of 
logem. Figure 1 plots the computational time to 
produce 1000 samples as a function of the 
calibration length. Several conclusions can be 
drawn: 
1. Of the three Gibbs samplers, the no-carryover 

sampler is computationally the most efficient. 
However, it produces a posterior distribution 
that is significantly in error. The distribution 

mis-specifies the mode and overestimates the 
posterior dispersion. It clearly is not a viable 
option when carryover storage occurs. 

 
2. In contrast, the full and heuristic carryover 

Gibbs samplers and the one-block MH 
sampler yield virtually the same posterior 
distributions. 

 
3. The computational performance of the full-

carryover Gibbs sampler rapidly deteriorates 
with increasing number of latent variables. 
The increase in computing time is roughly 
linear for a given calibration length, but 
becomes quadratic as a function of calibration 
length. In contrast, the heuristic Gibbs sampler 
using the simple termination criterion only 
took two to three times longer than the no-
carryover sampler.  

 
4. The performance of the one-block MH 

sampler is exaggerated because the proposal 
covariance was set equal to the posterior 
covariance determined by the Gibbs sampler. 
However, what is of interest is the fact that the 
one-block MH sampler yielded virtually the 
same posterior distribution as the full 
carryover Gibbs sampler despite the high 
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dimension of the parameter space. This 
suggests that the posterior distribution must be 
moderately Gaussian. Indeed inspection of the 
posterior covariance suggests its structure may 
be amenable to simplification. If this proves to 
be the case, it may be preferable to use the 
very efficient one-block MH sample instead of 
the Gibbs sampler. 

There is scope to further improve the efficiency of 
the heuristic sampler. For example, it is only 
necessary to evaluate the move ratio accurately 
when the move probability is less than 1. If the 
move ratio consistently stays above 1, then the 
proposal should be accepted even if the ratio has 
not stabilized. Likewise if the ratio remains 
consistently very small, then the proposal should 
be rejected with probability given by the current 
move ratio. 

5. CONCLUSION 

BATEA analysis for CRR models is based on a 
hierarchical Bayesian model which uses latent 
variables to describe the input and model errors 
affecting model predictions. A full Bayesian 
analysis enables inference of these latent variables 
and, importantly, permits direct scrutiny of the 
hypotheses describing input and model error. The 
Gibbs sampler has proven to be a robust tool for 
inferring the posterior distribution in hierarchical 
models. However, in the case of CRR models 
which are characterized by storages (such as soil 
and groundwater), a rigorous implementation of 
the Gibbs sampler becomes computationally 
intractable even for moderately small problems. 

This study shows this problem can be overcome 
with a careful implementation of the Gibbs 
sampler. A heuristic approximation is used to 
derive a robust Gibbs sampler, meeting both 
requirements of computational efficiency and 
unbiasedness. The approximation exploits the fact 
that the effect of initial conditions in CRR models 
diminishes as the model moves forward in time. 
The heuristic sampler is a good compromise 
between a simulation scheme, which fully 
accounts for carryover between successive state 
storage values at the expense of intractable  
computing time, and a simulation scheme, which is 
fast because it ignores carryover but leads to mis-
specification of the posterior distribution. It was 
found that the one-block Metropolis sampler was 
most efficient from a computational point of view, 
but requires a careful choice of the covariance of 
the Gaussian proposal. Given the Gibbs sampler 
was found to be efficient even with poorly 
specified starting values, this suggests the 

combined use of the Gibbs sampler with heuristic 
carryover and the one-block Metropolis sampler 
may yield the most efficient strategy to infer the 
BATEA  posterior distribution involving hundreds, 
or even thousands, of latent variables. 
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