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EXTENDED ABSTRACT 

The Bayesian Total Error Analysis methodology 
(BATEA) provides the opportunity to directly 
address all sources of uncertainty (input, model 
and response error) in the calibration of conceptual 
rainfall-runoff (CRR) models. BATEA has the 
potential to overcome the parameter biases 
introduced by poor conceptualisations of these 
sources of errors and enhance regionalisation 
capabilities of hydrological models. This study is a 
preliminary evaluation of the robustness of the 
parameter estimates and the robustness in 
validation of the BATEA framework using multi-
site catchment rainfall data. The aim was to 
compare how BATEA performed when provided 
with “degraded” rainfall from a single site 
compared to average rainfall from the entire 
catchment. The methodology used was to calibrate 
the same model to streamflow from the same 
catchment using six different rainfall time series; 
catchment average from the SILO gridded rainfall 
product, four individual gauges and the average of 
these four gauges. The catchment chosen was the 
Horton catchment, located west of the Great 
Dividing Range in Northern New South Wales, 
Australia. Markov chain Monte Carlo methods 
were used to compare the parameter estimates and 
their uncertainty using the BATEA and standard 
least squares (SLS) approaches for treating the 
sources of errors. It was found that the BATEA 
parameter estimates for the different rainfall time 
series were more consistent with each other, with 
average deviations from the overall average 
parameter value of the order of 0.5 to 1.2 times the 
parameter standard deviation. In comparison the 
SLS parameters estimates were more sensitive to 
the differences in the input rainfall data with 
average deviations from the overall average 
parameter value varying from 1 to 11 times the 
parameter standard deviation. 
For validation, it was found that using the 
catchment average rainfall the BATEA and SLS 
parameters provided similar Nash-Sutcliffe (NS) 

statistics. However, it was found that catchment 
average rainfall does not necessarily provide the 
best streamflow predictions. Figure 1 compares the 
NS statistic for the 2 year validation period for the 
twelve parameter sets, which arise from using both 
BATEA and SLS approaches to calibrate to each 
of the six rainfall time series. Figure 1(a) shows 
NS using gauge 054021 as input, while Figure 1(b) 
shows the NS using the SILO rainfall as input. 
Gauge 054021 was chosen as it had the lowest 
BATEA rainfall error and was located in the high 
rainfall region of the catchment. In general, the 
BATEA parameter estimates with the 054021 
rainfall provide higher NS statistics then SLS. This 
indicates that BATEA has the potential to utilise 
rainfall data from more productive areas of the 
catchment to enhance streamflow predictions. 
These results have several caveats, as they are 
based on a single catchment, and the validation 
period was relatively short, with the potential for 
biases. Nonetheless, these initial results are 
promising for the potential of BATEA to improve 
regionalisation. Future research will investigate the 
generality of these results with further case studies.      
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(a) Gauge 054021 rainfall 
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(b) SILO rainfall  

Figure 1. Validation statistics for 12 parameter sets. 
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1. INTRODUCTION 

Rigorous quantification of the impact of the 
various sources of uncertainty (input error, model 
structural error, response error) on the calibration 
of conceptual rainfall-runoff (CRR) models 
remains a challenging task in hydrological 
modelling.  This has a number of implications not 
the least of which is that regionalisation of CRR 
model parameters continues to be confounded by 
biases in the calibrated parameters and unreliable 
assessment of parameter and predictive 
uncertainty.   

In a recent review of CRR model calibration, 
Vrugt et al. (2005) note the lack of a robust 
framework that accounts for all sources of error 
Recently, several promising approaches have 
emerged in order to account for various sources of 
errors (Vrugt et al., 2005; Vrugt and Robinson, 
2007). Among these is the Bayesian total error 
analysis (BATEA) methodology,  proposed as a 
general framework to deal with the structural error 
of the model conceptualisation and measurement 
uncertainty in forcing/response data (Kavetski et 
al., 2006a,b; Kuczera et al., 2006). The core idea 
for BATEA implementation is to pose the CRR 
model and its error models as a Bayesian 
hierarchical model with latent variables describing 
errors in the data and the CRR model.   

This paper examines the performance of BATEA 
when calibrating the same CRR model to the same 
streamflow data using different rainfall time series 
from multi-site rainfall data within a single 
catchment. These different rainfall time series will 
include two estimates of the catchment average 
rainfall. The aim is evaluate how BATEA 
performs when provided with “de-graded” rainfall 
data from only a single site compared to rainfall 
information from the entire catchment. The key 
issues to be investigated are the robustness of 
parameter estimates and the robustness in 
validation. This robustness will be assessed 
relative to the standard least squares (SLS) 
approach for parameter estimation. The discussion 
will focus on the implications of the results for 
regionalisation of CRR models.  

2. OVERVIEW OF BATEA 

Figure 2 provides a schematic of the hierarchical 
BATEA framework. This conceptualization 
provides a framework to deal with the various 
sources of input, model and response error. For 
simulation, the hydrologic time series is 
partitioned into n epochs {(ti, ti+1-1), i=1,..n} where 
ti is the time step index corresponding to the 

beginning of the ith epoch. At the beginning of 
each epoch the stochastic parameters for the input 
error and model error components are sampled 
from their hyperdistributions, p(φ |α), and p(θ|β) 
respectively. The parameters for the hierarchical 
BATEA are therefore the deterministic parameters, 
ω, the hyperparameters β for the  stochastic model 
error component, the hyperparameters α for the 
stochastic input error component, and the 
parameters for the response error component, 
γ.  For a complete description refer to Kuczera et 
al. (2006). 

INPUT ERROR 

α 

 
RESPONSE 
ERROR 

 
),|~(p~

streamflowObserved

i γqqq ←
γ 

i i i

True streamflow
h( , , )←q x θ ω  

        MODEL ERROR 

Storm-dependent CRR 
parameters θi  ← p(θ|β) 

i
~inputObserved x

φi  ← p(φ |α) 
i i i

True input
g( , )← φx x%  

 

Hierarchical process 

Parameter

Observed variable 

Legend ω 

β 

 

Figure 2. Hierarchical BATEA framework 

The primary objective of the BATEA inference 
problem is to identify the parameters α, β, ω and 
γ  given the observed streamflow time series data 

},..,1,~{~ nii == qQ , the observed forcing time series 

},..,1,~{~ nii == xX  and any prior information. In 
the Bayesian framework this inference problem is 
described by the posterior pdf 

n:1n:1n:1n:1 dd)~,~|,,,,,p(

)~,~|,,,p(

φθXQφθγωβα

XQγωβα

∫=

=
 (1) 

where )~,~|,,,,,(p n:1n:1 XQφθγωβα  is the full 
posterior pdf, },...,{ 1:1 nn θθθ =  contains the set of 
latent variables which represent the epoch-
dependent CRR parameter realisations, and  

},...,{ 1:1 nn φφφ = is the set of latent variables 
which represent the epoch-dependent input errors 
for all storms.  

Recent advances in the BATEA framework 
adopted in this paper, include the ability to 
evaluate the full posterior of the parameters for the 
BATEA using innovative MCMC methods 
Kuczera et al. (2007). In addition, Renard et al. 
(2007) assessed the sensitivity of the error models 
used in BATEA. The key results were that   
parameter estimates are more sensitive to the 
chosen temporal structure than the chosen 

Stochastic CRR   
parameters, ←iθ p(θ β)
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hyperdistribution; Secondly, using input errors 
defined on a daily basis leads to more robust 
estimates than a storm epoch-based definition. In 
this paper the input errors, modelled as rainfall 
depth multipliers, are defined on a daily basis 
rather than a storm-epoch definition.    

3. CONCEPTUAL RAINFALL-RUNOFF 
MODEL – LOGSPM 

Figure 3 illustrates a typical CRR model, a 
member of the saturated path modelling (SPM) 
family (Kavetski et al., 2003), hereafter referred to 
as logSPM. The logSPM has 7 parameters (Table 
1) and three stores operating at a daily time step. 
The seventh parameter, rMult, needs further 
comment. Kavetski et al. (2006a,b) use rainfall 
depth multipliers as an explicit (albeit 
approximate) representation of input uncertainty, 
which has the assumption that rainfall errors are 
multiplicative (i.e., raintrue=rainobs*rMult). The 
same approach is used in this study to compensate 
for rainfall input error. 
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Figure 3. LogSPM  model conceptualisation. 

4. CASE STUDY CATCHMENT 

The catchment chosen for this case study was the 
Horton catchment, located in northern inland 

NSW, Australia (Figure 4). This catchment is one 
of the  catchments compiled by Peel et al. (2000). 
Catchment area is 1920 km2, with average annual 
rainfall of 819 mm and runoff coefficient of 0.13. 

Table 1. Summary of logSPM parameters. 
Parameter Description 

sK Exponent for saturated area 
fraction 

sF Shift parameter controlling 
saturated area fraction 

ssfMax Subsurface stormflow at full 
saturation 

rgeMax Groundwater recharge rate at full 
saturation 

kBF Groundwater discharge constant 
kStream Stream discharge constant 

rMult Observed storm depth rainfall 
multiplier 

To achieve the study’s objectives model 
calibration was undertaken with six different 
rainfall time series. The SILO rainfall is the 
catchment average rainfall derived from gridded (5 
x 5km) daily rainfall product produced by QLD 
Dept. of Natural Resources (Peel et al. 2000 
provides details). The other four rainfall time 
series were individual gauges located within the 
catchment, which had a common 4 year period 
from 1976-1980. Table 2 lists the rainfall time 
series and includes an “average” times series based 
on the arithmetic average of the four individual 
gauges. The statistics show there is a strong 
rainfall gradient in the catchment, with higher 
rainfall in higher elevation south-western areas of 
the catchment.  

 
Figure 4. Horton catchment showing raingauge 

and approximate stream locations. 
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Table 2. Rainfall Data. 
Rainfall Time 

Series  Elevation(m) 
Avg. Daily 

Rainfall (mm)
SILO - 1.51 

Average - 2.51 
054011 567 1.83 
054126 1465 3.40 
054021 869 2.66 
054138 392 2.15 

5.   MODEL CALIBRATION  

For model calibration, MCMC methods (Kuczera 
et al., 2007) were used to evaluate posterior of the 
model parameters for both the BATEA and SLS 
approachs. The four year period was split into two 
two-year periods. As the second two year period 
had a larger number of streamflow events, this was 
chosen for calibration, while the first two-year 
period was chosen for validation. Using a 100 day 
warm-up the calibration period was 18/4/1978-
7/4/1980, while validation was 25/9/1976-
17/4/1978.  

During initial BATEA calibration runs achieving 
convergence of the MCMC algorithm was found to 
be problematic when both input error and model 
error were inferred. This is possibly because the 
logSPM model is overparameterised with respect 
to the data (further discussed in Section 7). Hence, 
the parameterisation of model error as stochastic 
model parameters was not implemented and only 
deterministic model parameters were inferred. Two 
of the logSPM parameters (sF and kBF) were fixed 
at their SLS values. The uncertainty in the 
remaining parameters, sK, ssfMax, rgeMax, and 
kStream was inferred. For the input error model, 
the hyper-mean and hyper standard deviation 
(hyper-sd) of the stochastic rMult parameters was 
also inferred.  

For the SLS calibration, the uncertainty of four 
(sK, ssfMax, rgeMax, and kStream) of the six 
model parameters were inferred, the other two 
were fixed at their SLS values. The uncertainty in 
the rMult parameter was also inferred, the 
difference from BATEA being that it was 
modelled as a deterministic rainfall multiplier – 
constant for the entire calibration period.   

6. RESULTS & DISCUSSION 

6.1. Parameter Estimates 

For the parameter estimates, the general trend is 
that, for the four deterministic parameters (sK, 
ssfMax, rgeMax and kStream) the BATEA 
posteriors are reasonably consistent, identified by 

significant overlap in the probability limits for the 
different rainfall time series. In contrast the 
posteriors for the SLS parameters vary 
considerably for the different rainfall time series. 
Examples of this are shown in Figure 6. Table 3 
quantifies this by providing the number of standard 
deviations the average parameter value for one 
rainfall time series is from the overall average 
parameter value based on all the rainfall times 
series. For SLS, the average deviation is between 1 
and 11 standard deviations. While, for BATEA it 
is considerably lower, being between 0.5 to 1.4 
standard deviations.  

Table 3. Number of standard deviation the average 
parameter value for a certain rainfall time series is 

from the overall average parameter value. 

sK ssfMax rgeMax kStream rMult
hyper-mean

SILO 0.09 1.67 1.09 0.96 3.93
Avg 0.47 0.83 1.52 0.41 0.09

54011 1.39 1.38 0.43 0.50 0.10
54126 2.65 0.08 1.53 0.28 3.10
54021 0.84 0.06 0.16 0.17 0.77
54138 0.14 0.26 0.72 0.45 0.51

Average 
Deviation 0.93 0.71 0.91 0.46 1.42

SILO 1.36 2.17 1.50 2.01 1.59
Avg 3.06 2.39 2.70 1.67 29.37

54011 3.37 1.98 0.06 0.38 5.41
54126 8.78 0.12 3.80 2.08 15.82
54021 1.45 5.41 7.27 0.18 13.05
54138 0.67 3.07 15.38 0.07 5.77

Average 
Deviation 3.12 2.52 5.12 1.06 11.83

BATEA

Parameter

SLS

Rainfall 
Time 

Series

Calibration 
Method

 

Previous studies have shown using synthetic and 
real data that BATEA produces parameter 
estimates that are different from the SLS (Kavetski 
et al, 2006a). This is confirmed by the results of 
this study. The additional insight is that when 
calibrating the same model to the same streamflow 
data series, using different, but plausible, rainfall 
inputs, SLS parameters vary considerably, 
however the BATEA parameters remain relatively 
robust. This increases confidence that the BATEA 
parameter estimates are more robust then the SLS 
parameter estimates. The uncertainty in the 
BATEA parameters also greatly increases 
compared to the SLS parameters. This suggests 
that the model is over parameterised and model 
simplification may be required 

6.2. Model Evaluation  

Model evaluation is undertaken by comparing the 
simulated and observed streamflows for the 
calibration and validation periods using the Nash-
Sutcliff (NS) efficiency. The simulated streamflow 
was based on a single parameter set - the modal 
parameter estimates. The results for the BATEA 
and SLS calibrations for each of the rainfall time 
series is given in Table 4.  
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For calibration the NS was higher for BATEA than 
the SLS. This is a typical result, the additional 
degrees of freedom provided by the rainfall 
multipliers enabling BATEA simulations to almost 
perfectly match the observed data. In validation, 
the NS drops significantly. For BATEA this is 
because the rainfall multipliers are unknown and 
therefore the modal estimate of the hypermean for 
rMult is used throughout the simulation.  

Table 4. Nash-Sutcliffe (NS) statistics (bold 
indicates higher of either SLS or BATEA). 

Calibration Validation Rainfall Time 
Series BATEA SLS BATEA SLS 

SILO 0.98 0.91 0.72 0.75 
Average 0.96 0.90 0.71 0.78 
054011 0.97 0.88 0.23 0.23 
054126 0.92 0.80 0.42 0.33 
054021 0.96 0.87 0.84 0.59 

054138 0.97 0.84 0.57 0.79 

For validation, the results vary considerably 
depending on which rainfall time series is used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For both SILO and average time series the results 
were similar between BATEA and SLS, with SLS 
slightly outperforming BATEA. Of the remaining 
time series, the highest NS overall was for BATEA 
calibration to rainfall time series 054021, while the 
areal rainfall estimates were 2nd and 3rd best for 
SLS and BATEA, respectively. For BATEA, the 
highest NS was significantly better than both areal 
rainfall time series. For SLS the best result was for 
rainfall time series 054138, although the 
improvement compared to the areal average was 
minor. 

Interesting the catchment average rainfall (SILO or 
average) did not provide the highest NS in 
validation. This was provided by gauge 054021, 
calibrated to the BATEA parameter estimates.  
This suggests that the catchment average rainfall 
may not be the “best” rainfall for the prediction of 
streamflow. This was investigated by comparing 
the NS in validation using the two rainfall time 
series, SILO and 054021, and applying them to the 
12 different model parameter sets (6 BATEA and 6 
SLS) derived from calibrating to the six different 
rainfall time series. Figure 1 shows that the general 
trend is that the NS in validation is similar or 
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Figure 5. Comparison of parameters posteriors for SLS and BATEA for different rainfall time series. 
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better for the BATEA parameters compared to the 
SLS. This illustrates that BATEA parameter 
estimates are less sensitive to errors produced by 
using different rainfall time series. Furthermore, 
using 054021 rainfall time series provides better 
NS than the SILO rainfall time series when using 
the BATEA parameter estimates. This result 
suggests that the 054021 time series is a more 
appropriate rainfall time series for predicting 
runoff than the catchment average rainfall. This 
conclusion has a strong physical basis. 
Consideration of Figure 4 and Table 2 indicates 
that the 054021 gauge is located in the high 
rainfall area of the catchment, with 1.5 to 2.3 times 
the SILO catchment average rainfall. This area is 
likely the most productive in terms of generating 
runoff. The BATEA results concur with this 
conclusion - the 054021 rainfall had the lowest 
average rainfall error indicated by the rMult hyper 
mean, being close to 0 (in log space). These results 
indicate that rainfall from the most productive 
runoff generating areas produces better predictions 
than the catchment average rainfall. Furthermore, 
BATEA can utilise the most appropriate rainfall 
time series to provide enhanced runoff predictions 
as the parameters are less sensitive. The caveat is 
that for this case study the validation period is 
relatively short and consists of a low number of 
major streamflow events. This may introduce 
biases and further work is needed to determine the 
generality of these results by testing on more 
catchments with longer validation periods. 
BATEA was also implemented without any 
characterisation of model error. It is possible that 
the input errors compensate for this lack of model 
error. Hence further research will investigate the 
impact of incorporating model error on the results. 

6.3. Model Diagnostics 

Inspection of the model diagnostics was 
undertaken to determine if the hierarchical model 
assumptions were adequate. For the BATEA 
calibration, it is assumed that the latent variables, 
rMult, are lognormally distributed. Figure 7 shows 
the normal probability plot of the latent variables 
when calibrating to the average rainfall time series. 
The Kolmogorov-Smirnov (K-S) test indicated 
there was no significant evidence to reject the null 
hypothesis that the latent variables were 
lognormally distributed at the 5% level. The 
autocorrelation and partial autocorrelation plots 
showed no statistically significant autocorrelation 
(5% level). Similar results were found for the other 
five rainfall time series.  

Figure 8 shows the posterior diagnostics for the 
streamflow residuals. The normal probability plot 
shows there is significant departure from normality 

with the distribution exhibiting fat tails - the KS 
test was statistically significant at the 1% level. 
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Figure 7. Normal probability plot for rainfall 

multiplier latent variables.  
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(a) Normal Probability Plot  
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(b) Autocorrelation Function 

Figure 8. Diagnostics for streamflow residuals 

Figure 8(b) shows there is statistically significant 
autocorrelation at the high lags. However, the  
majority of this autocorrelation is due to the high 
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autocorrelation  in the first few lags, as the partial 
autocorre1ation has few statistically significant 
correlations at lags greater than 5. Nonetheless, 
further research is needed to refine the response 
error model with heavy tailed distributions and 
methods to account for the autocorrelation.  

7. CONCLUSION 

This preliminary evaluation of BATEA using 
multi-site catchment rainfall data produced the 
following results: Firstly, calibrating the same 
model to the same streamflow using different 
rainfall time series the BATEA parameter 
estimates were considerably more consistent with 
each other than the SLS parameter estimates. This 
illustrates BATEA is able to provide more robust 
parameter estimates that are less sensitive to input 
error. This is important for regionalisation where 
catchment parameters are typically transferred 
from one catchment to another. Secondly, selection 
of the rainfall time series was found to be 
important for providing reliable streamflow 
prediction during model validation. Although, 
BATEA provides more consistent parameter 
estimates for different rainfall inputs during 
calibration, it is unrealistic to expect it to provide 
good streamflow predictions in validation if the 
rainfall input is poor. For this catchment rainfall 
time series from the high rainfall areas, and 
therefore most productive in terms of streamflow 
generation, outperformed the catchment average 
rainfall time series in validation. Given the strong 
rainfall gradient that exists in the catchment this 
result has a strong physical basis. However, this 
result was only true when the BATEA parameter 
estimates were utilised, the SLS parameters did not 
show the same result. This has important 
implications for regionalisation. It shows BATEA 
provides more robust parameter estimates that are 
able to utilise the most appropriate rainfall time 
series to enhance runoff predictions. The challenge 
will be identifying the most appropriate rainfall 
time series in an ungauged catchment.  

There are several caveats which limit the 
generality of these conclusions. Firstly, model 
error was not incorporated. Secondly, the logSPM 
model is likely overparameterised. Thirdly, the 
validation period contained a low number of 
streamflow events and may be subject to biases. 
Fourthly, the model diagnostics illustrate further 
refinement of response error model is required. 
Although, further work is required to address these 
issues, the future looks promising for the potential 
of BATEA to improve the regionalisation of CRR 
models.  
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