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EXTENDED ABSTRACT 

The Tha Chin river is one of the most important 
rivers in Thailand (see Figure 1 below). It passes 
through agricultural and industrial areas and 
through settled communities. These factors have 
made the Tha Chin river the country’s most 
polluted river. The specific factors causing the 
river’s water quality degradation vary with the 
pattern of land use. The upper Tha Chin river 
basin runs through agricultural land where there is 
heavy use of fertilizer and insecticides. The lower 
Tha Chin river’s runoff comes from urban and 
industrial areas. The river is polluted from the 
combined discharges of industrial, domestic and 
rural inflows before reaching the sea. Moreover, 
salinity is also a major cause of water 
degradation.  

 

Figure 1.  A map of the Tha Chin river. 

To help develop a model by which we can 
manage the river, we need to collect data for 
precipitation, flow rate, seawater ingress, 
pollution discharge, etc. The model proposed to 
do this consists of a pair of coupled reaction-
diffusion-advection equations for the pollutant 
and dissolved oxygen concentrations, 
respectively. The coupling occurs because the 
oxygen reacts with the pollutant producing 
harmless compounds. Boundary conditions are 
chosen to match the unpolluted upstream 
conditions and the eventual flow into the open 
sea. We have considered a steady-state model 
initially in one spatial dimension and have found 
analytical solutions for pollutant and oxygen 
concentrations for some special cases. In view of 
the rapidity of the chemical reactions and the 
long-length of the river, it is possible to neglect 
the effects at the mouth of the river and far 
upstream. 

Such a model and its solutions will aid as a 
decision support on restrictions to be imposed on 
farming and urban practices. Analytical solutions 
of the simplified model and simulations enable 
scenarios to be tested for fish survival, which is 
usually taken as above 30% of the saturated 
dissolved oxygen concentration.  

This simplified model forms a basis for modelling 
the real situation, with the addition of variable 
pollutant input, tidal flow and the like. The 
extension to the transient spatial model is 
relatively straightforward. 

The methodology introduced here is generic and 
can be used with little modification for other 
rivers. 
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1. INTRODUCTION 

There is increasing concern about water quality 
worldwide, with increased pollution having a 
serious impact on the environment.  Mathematical 
models have been used extensively to predict 
water quality, and to provide reliable tools for 
water quality management in affected areas. 
These models simulate the spatial and temporal 
distribution of various water quality variables in 
the study area. The principal application that 
motivated this study is the Tha Chin river in 
Thailand, one of the most polluted rivers in that 
country (see Figure 1).  However, the modelling 
approach we have taken here is generic. 

Major effort has been made to integrate 
hydrodynamic and water quality models into 
some case-studies. The use of mathematical 
models for the simulations is a very powerful 
approach that greatly enhances the decision 
support tools used for water resource 
management. For these reasons, the use of a 
deterministic approach, with values of the 
pollutant sources, and of the biochemical 
coefficients expressed in the model, is necessary. 
These can initially be average or bounding values 
so as to give approximate values of the outputs.  

In the present study, a water pollution model 
composed of two coupled well-known advection-
dispersion equations is presented in which the 
various parameters and the loads of pollutant 
sources are incorporated. We are interested in a 
pair of coupled reaction-diffusion-advection 
equations for the pollutant and dissolved oxygen 
concentrations, respectively. The problem is 
treated as being one-dimensional along the length 
of the river for simplicity. Since the processes of 
pollution and aeration are sustained, we 
investigate the occurrence of steady states by 
considering the removal of pollutant by aeration. 
We construct analytical and numerical solutions.  

2. MOTIVATION: THE THA CHIN RIVER 

The Tha Chin river is a major river in the Central 
Plain and also the second significant river in 
Thailand descending from Chao Phraya River 
with a catchment covering an area of 13,000 
square kilometres where there is a human 
population of around 2 million. The total length is 
325 kilometres (PCD 2000) (See Figure 1).   

The Tha Chin river has served the local 
inhabitants in many aspects ranging from 
agricultural and industrial use, aquatic life 

preservation, source of water for domestic 
consumption, water supply for the Bangkok 
Metropolitan Area, disposal of waste water and 
discharge from agricultural activities. The 
releasing of outflows from water gates is variable.  
The water budget requirement and the fact that 
water is needed for agriculture, requires the 
prevention of sea water intrusion into the Tha 
Chin river by controlling the salinity, limiting it to 
not more than one part per thousand (ppt).  As for 
the overall water quality, it is reported that the 
Tha Chin river is the most highly polluted and 
degraded river in Thailand (PCD 2000).   

The results of Water Quality Monitoring in 2004 
indicated that the water quality parameters should 
contain on average:  Dissolved Oxygen (DO) of 
0.9 mg/litre, Biological Oxygen Demand (BOD) 
of 3.7 mg/litre, Total Coliform Bacteria (TCB) of 
69,000 MPN/100 ml and Fecal  Coliform Bacteria 
(FCB) of not more than 28,000 MPN/100 ml.  
However, based on the previously prescribed 
water sources standards, the water quality of the 
Lower Tha Chin river is very low due to low DO 
and high Bacteria pollution.  

The pattern of land use in the Tha Chin River 
basin is mostly agriculture amounting to about 
76% of the total, whereas the industrial area is 
concentrated in the Nakhon Pathom and Samut 
Sakhon provinces.  The usual waste and discharge 
comes from inhabitants residing along the river 
banks 30%, industrial 33%, and from the 
agricultural sector (pig farming) 47% (Simachaya 
et al. 2000). 

The problem concerning the water quality in the 
Tha Chin river includes water quality degradation, 
toxic dumping, and saltwater intrusion, leading to 
the need to resolve the conflicts between various 
water user sectors. Thus, transparent, logical and 
effective conflict resolution by under-pinning 
analysis of water usage and wastewater discharge 
allocation is now needed to ensure the sustainable 
use of water resources. To resolve the conflict, all 
stakeholders are participating in establishing an 
action plan and are involved in activities to 
restore and implement the integrated management 
of the Tha Chin river. This research provides a 
tool for policy-development and mitigation of 
water quality issues for the river. 

3. THE MODEL DESCRIPTION 

Consider the coupled equations for the pollutant 
and dissolved oxygen concentrations. The 
coupling occurs because the oxygen reacts with 
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the pollutant producing harmless compounds. For 
simplicity, we assume that diffusion is in one 
dimension along the river and is accompanied by 
forced convection and so the concentration P(x,t) 
(of pollutant) and X(x,t) (of dissolved oxygen)  
satisfies reaction-diffusion-advection equations. 
For a list of symbols, their meaning and units, see 
Table 1. Unless otherwise stated, these will be 
assumed to be constant for the purposes of this 
study. To relax this requirement is relatively 
straightforward. 

The system of equations which describes the rate 
of change of the concentration with position x and 
time t can be expressed in one dimension as 

 

 

 

These equations are standard (see Chapra 1997). 
The first equation includes both addition of 
pollutant (q), and removal by aeration, and the 
second equation is a mass balance for oxygen, 
with addition at the surface, and consumption by 
pollutant. 

Here,  H(x) is the Heaviside function   and 

 

 

This is used to capture the fact that pollutant is 
discharged for x > 0 only. 

We consider a river where pollutants are 
discharges in the form of wastes. It is assumed 
that these pollutants use dissolved oxygen for 
various biochemical and biodegradation 
processes. The discharge of pollutants into the 
river is at the constant rate q and the rate of 
depletion of concentration P due to biochemical 
embodying a “Michaelis-Menten” model is given 
by interaction involving the concentration of 
dissolved oxygen as well as the concentration P. 
For dissolved oxygen, it is assumed that the rate 
of growth of concentration by movement from the 
air into the river is proportional to the saturated 
concentration S less the concentration X, that is 
α(S–X). Interaction involves the concentration of 
dissolved oxygen as well as the pollutant 

concentration P. We consider cases with and 
without dispersion k negligible ( 0≈k ) and k non-
zero. To simplify the equations, we set the values 
A, v, q,  α and S to be constant.  

Table 1.  Variables and parameters values. 

variables 

t  is time (day) 

x  is the position (m) 

P  is the pollutant concentration (kg m-3) 

X  is the dissolved oxygen concentration (kg m-3) 

parameters SI units 

L is the length of river (m) 325,000* 

Dp is the dispersion coefficient of pollutant in the x 
direction (m2 day-1) 

3,456,000* 

Dx is the dispersion coefficient of dissolved oxygen in 
the x direction (m2 day-1), taken as the same as Dp 

3,456,000 

v is the water velocity in the x direction (m day-1) 43,200* 

A is the cross-section area (m2) 2100* 

q is the added pollutant rate along the river (kg m-1 
day-1) 

0.06* 

K1  is the degradation rate coefficient at 20 °C for 
pollutant (day-1) 

8.27*** 

K2 is the de-aeration rate coefficient at 20 °C for 
dissolved oxygen (day-1) 

44.10** 
 

k  is the half-saturated oxygen demand concentration 
for pollutant decay (kg m-3) 

0.007**** 

α is the mass transfer of oxygen from air to water  
(m2 day-1) ; α  = re-aeration rate*A′ 
(From Chapra (2007), the re-aeration rate = 0.055 
day-1. A′ = width of 300*unit length of 1) 

16.50** 

S is the saturated oxygen concentration (kg m-3) 
From Chapra (2007), S = 10 mgL-1 

0.01** 

*       PCD (2000) **    Chapra (1997) 
***  based on the molecular weights in the chemical reaction   
 K1 = (3/16) K2 **** estimated   
 
For fish to survive we need X ≥ 0.3S everywhere 
(Murphy 2007) and so this implies, via the 
various models, a limit on q. This is the 
underpinning constraint from the models, which 
are shown in Figure 2. 

Figure 2.  Model special cases. 
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4. SPECIAL CASES OF THE MODEL 

We now consider various special cases from the 
scheme shown in Figure 2, gradually building up 
towards the full model.  In this paper we consider 
steady-states, presuming conditions are constant. 

Model 1. This model is used for the steady state 
analysis. In this model we have zero dispersion 
(Dp= 0, Dx= 0).  

 
We consider k negligible ( 0≈k ) and boundary 
conditions Ps(0) = 0 and Xs(0) = S. The far 
downstream pollutant concentration is Ps(x) = 
(q/K1A)(1-exp(-K1x/v)),  and so the downstream 
limit is given by q/K1A. This is shown in Figure 3. 

Figure 3. The steady state solution for P with no 
dispersion in the case k negligible.   

Upstream there is no pollution as there is no 
dispersion. For the dissolved oxygen 
concentration, the solution is 

 

 
 

and downstream the oxygen level decreases due 
to interaction with the pollutants.  

This is shown in Figure 4. If the discharge from 
inhabitants residing and farming along the river q 
is such that X is less than 30% of the saturated 
values S, the fish do not survive (PCD 2000).  

So the requirement for q is q < 0.7αK1 S/K2 

 

 

 

 

 

 

 

 

Figure 4.  The steady state solution for X with no 
dispersion in the case k negligible.   

Model 2. The previous model simplified because 
the half-saturated oxygen demand concentration 
for pollutant decay is negligible ( 0≈k ). If 
instead it is significant then  

 

 

 
 
With the same boundary conditions   Ps(0) = 0  
and  Xs(0) = S, the far downstream solutions for 
pollutant and dissolved oxygen concentration are 
given, respectively.  

 

 
The steady far-downstream solution depends 
therefore on the parameters k and q. A 
computation was performed using MATLAB to 
find the steady state solution for various k and q 
in the phase plane with x as an independent 
parameter (see Figure 5). 

 

 

 

 

 

   

Figure 5. The global stability in the P–X plane 
with no dispersion for k non-zero. 
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We note the downstream solution above does not 
exist if q ≥ αK1 S/K2 and in that case, Xs (∞) = 0. 
Figure 6 shows the numerical solution as k varies. 

 

 

 

 

 

 

 

Figure 6. The steady state numerical solutions for 
P and X as k varies.   

Model 3. We now consider the steady state case 
with dispersion terms (let Dp ≠ 0, Dx ≠0).  

 

 

 

 

In this model, k is assumed to be negligible 
( 0≈k ) and the solution below is obtained. 

 

 

 

where 
pDv 2/=δ and   

In this model we used the conditions Ps(∞) < ∞ 
and Ps(-∞) < ∞. We also require P′s(x) and Ps(x) 
to be continuous at x = 0. There are no point 
sources of pollutant (only distributed sources), 
which makes Ps(x) continuous. Since the 
dispersive flux DP′s(x)−νPs(x) is also continuous 
this implies that P′s(x) is also continuous. For 
dissolved oxygen, we find 

 

 

 

where 

 

 

Again we use the initial conditions Xs(∞) < ∞ and 
Xs(-∞) = S. Also Xs(x) and X′s(x) are continuous at 
x = 0. The pollutant concentration Ps(x) is 
relatively smooth with a discontinuity of q/DpA in 
the second derivative at x = 0. The dissolved 
oxygen concentration Xs(x) has a discontinuity in 
the fourth derivative at x = 0. To test our model 
we set the parameters A, v, q, Dp, Dx and K2 to be 
1; α, S and K1 to be 2. For the above set of 
parameters the graph of P versus X is shown in 
Figure 7 as below.    

Figure 7. The analytical steady state solution with 
dispersion for P and X. 

Model 4. The last model includes dispersion 
terms (let Dp ≠0, Dx ≠0). In this case k is non zero. 
The following system of nonlinear second order 
differential equations is obtained:  

 

 

 

Boundary concentrations for P and X are still 
given by    Ps(-∞) = 0 and Xs(-∞) = S far upstream 
and far downstream, respectively.  
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Furthermore, we obtain flux conditions by 
mathematical analysis directly,  

P′0(0) ≤  P′k(0) ≤  q/Aν  and  X′0(0) ≤  X′k(0) ≤ 0. 

A numerical solution will be used for the 
governing equations (17, 18). 

5. NUMERICAL PROCEDURE 

We have developed a numerical routine to search 
for the solution to the nonlinear equations. We 
integrate from a grid of initial values at x = 0 and 
refine this grid to find the solution to the 
boundary conditions. Figure 8 illustrates this 
procedure. In Figure 9 we explain the steps 
involved in the algorithm by means of a flow 
diagram for the numerical computation. 

Figure 8. The numerical computation for finding 
the initial condition. 

For initial testing of the algorithm we have used 
the case where k is negligible. The Euclidean 
norm is used for measuring the agreement of trial 
initial conditions with pollutant and dissolved 
oxygen concentration far upstream and 
downstream. We have called this “score”. This is 
shown in Figure 10. The lowest “score” 
corresponds to the best numerical solution. 

There is a pair of coupled nonlinear differential 
equations in this model.  Some parameter values 
have been assumed for testing the MATLAB 
computation. Figure 11 illustrates how transient 
solutions approach asymptotically to the 
downstream solution of pollutant and dissolved 
oxygen in the case when k is negligible (k ≈ 0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. The flowchart of the numerical 
procedure. 
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Figure 10. Existence of a minimum value of 
score for Ps(0) and Xs(0). 

 

 

 

 

 

 

 

Figure 11.  The contour plot of Ps(0) and Xs(0). 

6. DISCUSSION AND CONCLUSIONS 

We have proposed a mathematical model for river 
pollution comprising a coupled pair of nonlinear 
equations and investigated the effect of aeration 
on the degradation of pollutant. The results from 
numerical calculations (Figure 12) agree with the 
analytical solution under the conditions of no 
pollution and saturated dissolved oxygen far 
upstream, tending to a steady state far 
downstream for a long (considered infinite) river. 
Using this technique we will be able to obtain the 
steady state solution for the nonlinear model.  

The actual rate of pollutant insertion is q = 0.06 
kg m-1 day-1. This makes Xs = 0 for large x, that is, 
the river is ecologically dead. From Model 1, the 
fish survival constraint on q for the Tha Chin river 
is q < 0.015. 

However, with the value of q = 0.06 kg m-1 day-1 , 
subsequent investigations (to be published later) 
show that for a river of length of that in this study 
(the lower 325 km of the Tha Chin river), the 
oxygen level fortunately remains above the 
critical value of 30% of the saturated oxygen 

concentration and reaches zero far beyond 325 
km. Thus, for an infinite river, pollutant being 
inserted into the river is about 4 times the ideal 
rate for fish to survive (Murphy 2007). This 
implies that the total BOD rate for the river 
should have a maximum insertion of 5000 kg 
BOD day-1. However, this constraint is not 
reached due to the finite length over which 
pollution is actually discharged and the oxygen 
concentration which remains above the critical   
threshold value. 

 

 

 

 

 

 

 

Figure 12. The numerical steady state solutions 
of Ps(0) and Xs(0) for negligible k. 
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