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EXTENDED ABSTRACT 

Severe wildfire swept through north-eastern 
Victoria, Australia, in early 2003 burning 
approximately 1.3 million ha including the 
catchments of major water impoundments such as 
the Gippsland Lakes, and the Hume and 
Dartmouth dams. There were immediate requests 
from catchment managers and water authorities for 
estimates of likely water quality impacts. In 
response, the Victorian Department of 
Sustainability and Environment commissioned a 
number of stage triggered automatic water quality 
samplers to be placed at existing hydrologic 
stations within catchments to the north and south 
of the Great Dividing Range, including the Ovens, 
Kiewa, Upper Murray, Snowy, Tambo, and 
Mitchell River basins. Only monitoring locations 
with a substantial pre-fire water quality monitoring 
history were selected. Sampling strategies prior to 
the fire were typically fixed interval manual 
monthly samples with between 10 and 30 years of 
sampling record. The objectives of this study were 
to: (i) quantify the change in total suspended 
sediment (TSS) loads following the fire, and; (ii) 
estimate the uncertainty surrounding those 
changes. 
 
In an ideal world the pre and post treatment (i.e. 
fire) sampling strategies would be identical. This 
was not possible in this case, (or desirable, given 
the legacy dataset) and an optimal load estimation 
method was developed in response to the pre-
existing sampling strategy. The linear interpolation 
method could not be applied to the post-fire dataset 
due to an incomplete event sampling record. 
Regression methods could not be applied because 
the relationship between flow and concentration 
was poor. Of the remaining options, the averaging 
method was selected as it could be applied to the 
pre and post datasets. To minimise the bias 
resulting from the post fire event based sampling 
strategy, the entire pre and post fire data were 
stratified into event and base flow categories using 
hydrograph analysis. 

 

The uncertainty in estimated loads is rarely 
reported in the literature and this paper follows on 
from Etchells et al. (2005) by explicit reference to 
3 broad error groupings: 

1. Measurement uncertainty, associated with 
errors in measurement and sampling. 

2. Knowledge uncertainty, involving our 
uncertainty in the process/model. 

3. Stochastic uncertainty, due to variation in 
the data. Can be represented by the 
variance. 

Measurement uncertainty was minimised by 
selection of the best load estimation method to 
match the available data. Knowledge uncertainty 
was evaluated to some extent by comparison of 
different load estimation methods for a subset of 
the data. Stochastic uncertainty was quantified 
using error calculations and through the use of 
Monte Carlo simulations. 

 
The estimated increases in sediment loads for the 
year after the fire were large both in magnitude 
and variability between sites (from 20 to ≥ 1000 
fold difference in pre- and post-fire loads). The 
majority of the total load was associated with event 
flows. Stochastic uncertainty was very large, with 
the standard deviation of the factor increases (over 
the pre fire state) being typically many times 
greater than the factor increase itself. Alternative 
load estimation methods produced values that 
varied by up to a factor of three. This uncertainty 
often resulted from a small number of extremely 
high sediment concentration values. The results 
indicate that the effects of fires on water quality 
are likely to be very large, and that increasing the 
precision of load estimates following future fires 
will require a much more intensive sampling 
strategy. 
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1. INTRODUCTION 

Elevated post-fire sediment loads are widely 
recognised as a consequence of intense wildfire, 
however the magnitude of these increases has 
rarely been quantified in Australia. This paucity of 
data means there is little knowledge of the possible 
scale and longevity of impacts, and no parameters 
with which to populate water quality models.  

A key aspect is the estimation of uncertainty 
around load estimates which is rarely presented in 
water quality studies. This paper explores the 
issues and uncertainty associated with estimation 
of pre- and post-fire suspended sediment loads and 
derivation of meaningful water quality model 
parameter values from sub-optimal sampling 
regimes.  
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Figure 1. Location of the monitoring stations in 
NE Victoria. The red hatching is the burnt area. 

The locations of monitoring stations are shown in 
Figure 1. Only data from three stations will be 
discussed in this paper; Dargo River (672 km2), 
Mitta Mitta River (1533 km2), and 2 stations on the 
Tambo River, Bindi (523 km2) and Swifts Creek 
(943 km2). These catchments had the best coverage 
of samples. Unfortunately, several sites had issues 
with auto-samplers not triggering during storms 
resulting in incomplete data sets. For these 
catchments, the issues surrounding uncertainty 
pertinent to the Dargo, Tambo and Mitta Mitta are 
multiplied.  

3. UNCERTAINTY  

The estimation of catchment exports of TSS and 
other constituents often include considerable 
uncertainty from a range of sources. There are a 
number of error taxonomies, however a simple 
classification listed by Etchells et al. (2005) 

includes 3 broad error groupings (see listing in the 
extended abstract). 

Measurement uncertainty: For this study the 
measurement uncertainty is probably dominated by 
the temporal timing and frequency of the stream 
sampling regime, which differed between the pre-
fire and post-fire period. The pre-fire samples were 
fixed interval (usually monthly) manual grab 
samples. A total of 150, 189, 35, and 196 pre-fire 
water quality samples were analysed for the Dargo 
River, Mitta Mitta River, Tambo River at Bindi, 
and Tambo River at Swifts Creek, respectively.  

Post-fire water quality samples were collected by 
auto samplers, triggered by manual float switches 
during storm events. Figure 2 illustrates the post-
fire event sampling regime, while Table 1 
summarises the proportion of storms reasonably 
“captured” by the storm event triggered sampling.  
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Mitta Mitta River at Hinnomunjie
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 Tambo River at Bindi
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Tambo River at Swifts Creek
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Figure 2. Daily discharge and TSS sample times 
and concentrations. 
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Table 1. A summary of the storm-event-based post 
fire sampling data, illustrating the degree to which 
storm events were captured by the auto-sampling 
regime. 
 
 
 
 
 
 

Knowledge uncertainty: This source of 
uncertainty can be minimised by better 
understanding the processes that drive variation in 
loads, and by ensuring that the effects of these 
processes are represented within the model. This 
process representation and data availability drives 
model choice. Possible models for pollutant load 
estimation are described below. 

The net load of in-stream TSS exported from the 
catchment St can be represented by the equation; 

∫=
T

t CQdtS
0

    (1)   

where C and Q are the instantaneous sediment 
concentration and discharge volume respectively, t 
is time, and t = T is the duration over which the 
load is calculated. An expression describing the 
product C·Q as a function of time is generally not 
available so St is approximated by;  
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where i is the interval number, and when the 
sampling interval t is short compared to the period 
of time over which the discharge and concentration 
vary. While discharge is often frequently recorded, 
concentration is not (except in the case of in-situ 
turbidity measurement) and linear interpolation is 
therefore used between points of measurement 
given by;  
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  (3)                                                                                   

where concentrations are denoted
itC , ti i=1,…,n 

are the times at which concentration is measured, 
t0 and tn+1 are the times at the start and end of each 
sub-interval, and qt is the discharge at each 
timestep.  

The problems associated with accurate estimation 
of sediment and nutrient loads are numerous. They 
include both the physical constraints of 
implementing appropriate sampling regimes, and 
the related statistical issues associated with load 
estimation (Etchells et al. 2005, Cohn 1995, 
Letcher et al. 1999, Preston et al. 1989). Equation 
3 is often used to estimate the “true” load 
(Equation 1) from catchments. If the sampling 
interval is large compared to the period of time 
over which the discharge and concentration vary 
then use of Equation 3 will result in large errors. In 
this case alternative load estimation methods are 
required, which can be categorised into three broad 
classes (Preston et al. 1989); 

1. Averaging 
2. Ratio estimators 
3. Regression methods (rating curves) 

In an ideal world selection of a sampling strategy 
should follow from the selection of a load 
estimation method, however in reality water 
quality data is often scarce, and is collected for a 
variety of different purposes. In practice it is often 
necessary to select a load estimation method to 
best suit the available dataset, taking into 
consideration factors such as the frequency and 
length of period of sampling, and the type of 
sampling (eg. fixed interval vs storm event 
sampling). For example, fixed interval sampling 
over short study durations will tend to under 
represent the larger events, resulting in 
underestimates of the true load. Exploratory 
analysis of the water quality dataset is required to 
establish whether or not the assumptions 
associated with each load estimation method are 
violated. Ideally, an estimator should be precise 
(ie. have low variance) and accurate (low bias). An 
unbiased estimator has an expected value that is 
equal to the population parameter. Stratification 
(eg. by flow category, season, rising or falling limb 
of the hydrograph) of the data may also improve 
load estimates. Estimation methods are described 
in more detail below.  

Averaging  

A typical example of an averaging method for the 
estimation of the load L of a constituent is given 
by the model; 

∑
=

=
n

i

i

n
c

QL
1

     (4)     

where Q is the total discharge, ci is the 
concentration of the ith sample, and n is the number 
of samples.  

Location
Total No 
of events

Num 
sampled

% 
sampled

Pre 2003 
sampled

Dargo River 16 6 38 86
Mitta Mitta River 19 10 53 106
Tambo River at Bindi 8 6 75 10
Tambo River at Swifts Ck 17 5 29 107
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Ratio estimators 

A typical example of a ratio estimator for the 
estimation of the load (L) of a constituent is given 
by a model where the average ratio of load to 
discharge is multiplied by the total discharge; 

XxyYR )/(=      (5)   

where y and x are the sample means of load and 
discharge respectively, YR is the ratio estimate of 
load and X is the discharge. The ratio estimator is 
considered a best linear unbiased estimate under 
two conditions: The relation between the samples 
of load and discharge is a straight line through the 
origin, and the variance of the load samples is 
proportional to the discharge.  

Monte Carlo Simulation 

Monte Carlo simulation can be used with either the 
ratio or the averaging methods. The method 
involves generating a random population of input 
values from a theoretical distribution calculated 
from the observed data. Load estimates are made 
for each instance of the input data, generating a 
distribution of estimated loads.  

Regression methods 

Regression methods exploit the often strong 
relationship between discharge and concentration. 
Generally, log-log regressions are applied because 
flow and concentration are assumed to be 
described by a bi-variate log normal distribution. 
A common log-log model is given by; 

Ln(C) = a + bLn(Q)    (6)    

where Q is the discharge, C is the concentration, 
and a and b are regression parameters. The model 
includes calculable error within the range of the 
regression and unknown error due to extrapolation 
of the regression outside the range over which the 
regression was developed.  Preliminary analysis of 
the data collected in this study showed a poor 
relationship between discharge and concentration 
(Figure 3) and as a consequence the regression 
method was not used for load estimation. 

In this study, a stratified averaging and Monte 
Carlo method were used. Interpolation was not 
possible as all events were not sampled (Figure 2), 
and samples for a number of events were biased 
toward the rising limb of the hydrograph. 
Regression analyses were explored (Figure 3), but 
the variables were not well correlated over the data 
range.  

Stratification was based on a base-flow separation, 
using the Lyne and Hollick (Nathan and 
McMahon, 1990) method. Each day of record was 
categorised as either base-flow or event-flow based 
on a threshold value of the daily base-flow index 
(BFI, the ratio of base-flow to total flow). 
(BFI>0.85 was categorised as base-flow). A cut-
off value < 1.0 was used after visual inspection to 
accommodate flows that exceeded the 
automatically separated base-flow which would be 
unlikely to carry event-level concentration of 
sediment. The flow records were then used to 
assign water quality samples to event-flow or base 
flow categories. The resultant concentrations were 
then averaged to obtain dry weather concentrations 
(DWCs) and event mean concentrations (EMCs).  

 

Figure 3. Instantaneous discharge and TSS 
concentration for the post-fire storm event 
triggered samples.  

For the Monte Carlo simulation the same stratified 
(DWC, EMC) concentration data were used as for 
the averaging method. For each flow category at 
each site, the observed population of concentration 
values were assumed to be log-normal. The 
observed data for all the sites were assumed to be 
log-normal because: 1) for the sites with a large 
number of water quality samples, the sample 
distribution was observed to be approximately log-
normal; 2) concentration data cannot be negative, 
and are often characterised by infrequent, very 
high concentration values, properties that are 
consistent with the log-normal distribution, and; 3) 
researchers commonly observe that water quality 
data is log-normally distributed (Parkhurst, 1998). 
Between 1000 and 60,000 random values with a 
log-normal distribution, the distribution parameters 
of the observed data were generated. The number 
of random values generated was determined by 
visually assessing a plot of sample size vs 
estimated mean, so as to determine the sensitivity 
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of the sample parameters to the sample size. In 
general, observed samples with larger variances 
required a larger sample size to generate a stable 
mean value. 

These concentration distributions were then 
multiplied by the appropriate discharge volume for 
each year in each flow strata at each site. The loads 
based on the DWC and the EMC were added at 
each iteration to get a total load for that iteration. 
This population of loads was the output from the 
simulation.  

Finally, stochastic uncertainty reflects the 
underlying variability in the data, in this case 
sediment concentration data, which can be readily 
quantified using estimates of the variance. The 
analytical propagation of stochastic uncertainty 
through estimation models can become complex 
even with relatively simple models. The following 
sets out the uncertainty methods used. 

Arithmetic Averaging 

An important, but often neglected component of 
water quality analysis is error estimation. The error 
in load estimates using the averaging method were 
determined by applying the propagation of error 
formula for Y =f(X,Z, …); 

22
2

2
2

... xzzxy s
Z
Y

X
Ys

Z
Ys

X
Ys ⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

++⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=   (3)                                             

where sx , sz and sy are the standard deviations of 
the X, Z, and Y measurements respectively, and  

X
Y

∂
∂ is the partial derivative of the function Y with 

respect to X. sxz is the estimated covariance 
between the X,Z measurements. The covariance 
term is zero if X and Z measurements are 
independent, and should be included only if 
estimated from sufficient data. Applying the 
propagation of error formula to the load estimation 
equation gives; 
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where sC sv and sL are the standard deviation of the 
concentration volume and load measurements 
respectively. The partial derivatives simplify, 

giving V
C
L
=

∂
∂  and C

V
L
=

∂
∂ . Assuming the 

covariance between V and C  is zero (this is 

unknown due to the short time period of available 
data, but unlikely), Equation 4 simplifies to; 

      (5) 

which is in a form used by Hart et al. (1987) for 
estimating uncertainty in load estimates. In this 
study the volume measurement V is a single annual 
value at each site for the year of the load estimate 
(allocated proportionally to the base-flow and 
event flow categories based on the base-flow 
separation), and therefore the variance sv

2 cannot 
be calculated. A coefficient of variation (Cv) of 
10% for the volume estimate was assumed and the 
standard deviation sv was subsequently 
approximated by transposing the coefficient of 
variation formula; 

 
1

100*
VvC Vs

=     (6)    

The standard deviation sL of the load estimate is 
calculated for each of the two flow categories 
(event flow L1, and dry weather flow, L2) and 
combined by; 

22
21 LLL sss +=     (7)  

to give the standard deviation of the estimated total 
load. The uncertainty in the ratio of the absolute 
values of predicted post-fire (Bt) and pre-fire 
(UnBt) load (ie. the factor change) is approximated 
from (Hepworth pers comm.); 

 

     (8) 

This approximation is calculated using the delta 
method, by expanding the function f(x,y) = x/y in a 
Taylor series around the mean value (E(X), E(Y)) 
and taking the variance of the linear terms. There 
are more terms in the series, though they don't 
contribute significantly to the estimated variance in 
the ratio. Note that the covariance is assumed to be 
zero in this approximation. 

Monte Carlo simulation 

The expected value E(X) and variance var(X) of 
the observed data was determined, respectively, 
from; 
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Where μ and σ are the mean and standard deviation 
of the logarithms of the observed data.  

4. ESTIMATION AND UNCERTAINTY 
RESULTS 

Estimated loads, factor increases and uncertainties 
for both the arithmetic method and the arithmetic 
method using Monte Carlo simulation are given in 
Table 2. 

Four aspects are immediately obvious;  

1. The large magnitude of the load increases 
2. The very high variability between 

catchments  

 
3. The very high stochastic uncertainty on 

the estimates of loads. In many cases the 
standard deviation of the estimated load is 
greater than the mean value. 
Measurement uncertainty due to sampling 
error is additional to the listed error 
values.  

4. The variation in estimated loads 
depending on the load estimation method 
used (eg. arithmetic mean vs Monte Carlo 
simulation using the averaging method), 
particularly when the data are strongly 
skewed and affected by extreme values. 

Table 2. Estimated TSS loads, factor increases and uncertainties. 

Although the uncertainty estimation around the 
load increases are very high, the results suggest 
there was a very significant increase in loads. The 
concentration data alone (Figure 2 and Table 1) 
demonstrates this large increase. The variability 
of impacts is most likely to be a function of the 
severity of the burn and rate of subsequent 
vegetation recovery; the intensity and volume of 
rainfall following the fires; and the interaction of 
these factors. Additionally, differences in 
response may reflect the proximity of the 
monitoring stations to the burnt area; the total 
percentage of catchment burnt; and the degree to 
which riparian areas were impacted. 

The large uncertainties and variation in loads 
produced from the analyses beg the question of 
the sensitivity of the results to the selected load 
estimation method. A further exploration of the 
data from one catchment (Tambo River at Bindi) 
was undertaken. Data from the first 6 months 
after the fire was used as the sampling regime was 
the most complete of all the data sets. Seven 
methods were used to estimate loads, including 
regression against discharge, linear interpolation, 
Monte Carlo, and 4 variations on the averaging 
method considering non-stratified and stratified 
estimation, and use of geometric and arithmetic 
means for the stratified and non-stratified cases.  

Table 3 shows that estimates varied about three-
fold depending on the load estimation method 

used, from around 5000t to around 15,000t. 
Methods using the geometric mean produce 
results most similar to the interpolation method, 
while methods using the arithmetic mean, or the 
Monte Carlo simulation produce estimates at the 
high end of the range. Parkhurst (1998) suggests 
that for concentration data where mass balances 
are being calculated that the arithmetic mean is in 
most cases superior, except perhaps where the 
number of samples is low (eg. N < 5), in which 
case the geometric mean may be superior.  

Table 3. Comparison of loads (t) using a range of 
different load estimation methods.  

Method Discharge (ML) Concentration (mg/L) Load (t) 
 

 Total  %  
base 

% 
event 

All 
data 

Base 
only 

Event  
only 

Total  
 

% 
base

% 
event 

          
Regression << method could not be applied >> 

Linear 
interpolation 2,314 -- -- -- -- -- 4,803 -- -- 

Arithmetic 
mean 2,314 -- -- 6,798 -- -- 15,732 -- -- 

Geometric 
mean 2,314 -- -- 2,852 -- -- 6,600 -- -- 

Arithmetic 
mean stratified 2,314 21 79 -- 2,662 6,978 14,050 9 91 

Geometric 
mean stratified 2,314 21 79 -- 2,110 2,909 6,343 16 84 

Monte Carlo 
stratified  21 79 -- -- -- Approx

15,000 10 90 
 

 
Unfortunately, it is difficult to conclude which 
method is “best” from this analysis, because the 
interpolation method could not be applied with a 
high degree of certainty. It should also be noted 
that the “best” method for this site may not be the 
best method for a different catchment with 

 

Catchment Year

Baseflow 
Conc.     

(mg L-1)

Eventflow 
Conc.     

(mg L-1)

Unburnt 
Total 
Load 

(tonnes)
Unburnt 

SD

Burnt 
Total 
Load 

(tonnes)
Burnt 

SD

Unburnt 
(tonnes 
km-2yr-1)

Burnt 
(tonnes 
km-2yr-1)

Relative 
Change

SD of 
Relative 
Change

Unburnt 
Total 
Load 

(tonnes)
Unburnt 

SD

Burnt 
Total 
Load 

(tonnes)
Burnt 

SD
Relative 
Change

SD of 
Relative 
Change

Tambo @ Swifts Unburnt 4.10 5.75
Tambo @ Swifts Burnt03 26.50 1139.07 193 502 32967 77586 0.2156 36.83 171 600 145 150 33443 146511 230 1036
Tambo @ Bindi Unburnt 3.13 4.50
Tambo @ Bindi Burnt03 2662.00 7069.84 17 6 24147 35811 0.0316 46.20 1459 2165 18 14 26103 40333 1462 2534

Dargo Unburnt 3.30 4.62
Dargo Burnt03 6.67 119.66 701 600 14854 33714 1.0376 21.97 21 51 646 509 13692 69116 21 108

Mitta Mitta Unburnt 2.86 9.35
Mitta Mitta Burnt03 101.90 1721.10 3037 1409 511559 1716019 1.9812 333.70 168 570 2279 3125 817192 6087376 359 2716

Arithmetic Method Monte Carlo Method
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different data properties. However, the analysis 
does give an indication of the possible range in 
estimated loads when the input data is relatively 
good.  

5. DISCUSSION 

The results of the various load estimation has 
demonstrated the very significant water quality 
impacts that can be generated by fire, and the 
equally significant issues associated with 
uncertainty around the estimate. These 
uncertainty estimates are rarely given in water 
quality studies. The stochastic uncertainty is 
particularly high with data such as this due to the 
very high concentrations that are generated post-
fire, resulting in large standard deviations.  

Where water quality models are parameterised by 
data such as this, the uncertainty surrounding 
predictions are very significant. The EMCs and 
DWCs were used by Feikema et al. (2005) to 
parameterise the E2 model for prediction of TSS, 
total phosphorous and total nitrogen downstream 
of the hydrologic stations depicted in Figure 1. 
Feikema et al. (2005) noted that the uncertainties 
around those predictions are large, with a large 
proportion of this uncertainty due to the 
uncertainty in the estimation of EMC and DWC 
values. 

The results indicate that increasing the precision 
of load estimates following high-disturbance 
events such as wildfire will require a substantially 
more intensive sampling strategy in future. For 
example, Lane et al. (2006) obtained error 
estimates for TSS loads of < 10% using 15 minute 
turbidity observations and the regression method 
for load estimation. However this approach 
carries considerable maintenance overheads, with 
equipment requiring frequent calibration, and 
would be costly to apply in the remote locations 
reported in this study.  
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