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EXTENDED ABSTRACT 

Most environmental and biological phenomena, 
such as underground water flow and pollution and 
properties of wood, exhibit variability which can 
not be successfully simulated using deterministic 
approaches because many components of these 
systems could be inherently stochastic. However, 
these systems can be considered as a class of 
stochastic processes with arbitrarily inherent 
nature for modelling the system behaviour in space 
and time. Therefore, mathematical models based 
on stochastic calculus along with stochastic 
differential equations have been established to 
simulate these particular cases of environmental 
and natural systems.  

Artificial neural networks (ANNs) are another 
approach used to model natural and biological 
systems on the basis of mimicking the information 
processing methods in the human brain. However, 
very limited work has been done on investigating 
the capability of current neural networks to learn 
and approximate stochastic processes in nature 
although most neural networks operate in a 
stochastic environment. As a result, it is necessary 
to develop a new class of neural network named 
Stochastic Neural Networks for simulating 
stochastic processes or stochastic systems. The aim 
of this research is to create a suitable mathematical 
model for developing stochastic neural networks 
and implementing the proposed stochastic neural 
networks for simulating displacement fields of 
wood in compression. 

A stochastic neural network is based on the 
canonical representation of a class of non-
stationary stochastic processes by means of 
Brownian motion or white noise. The reason is that 
Brownian motion and white noise, which are two 
basic stochastic processes, can enable a network to 
numerically estimate the stochastic integrals of the 
canonical representation. Depending on whether a 
stochastic process is represented by a random 
function or a set of realisations (data) of a 

stochastic system, different approaches are used to 
develop stochastic neural networks. This paper just 
focuses on how to develop a stochastic neural 
network based on a set of realisations of a 
stochastic system because this approach is suitable 
for real stochastic systems as the governing 
stochastic function is unknown. There are three 
main steps in developing a stochastic neural 
network: (a) finding a Canonical representation of 
the stochastic process by means of Brownian 
motion or White noise; (b) creating deterministic 
input-output mappings from the stochastic process 
and then developing deterministic neural networks; 
(c) developing the stochastic neural network by 
adding Brownian motion or White noise into the 
developed deterministic neural networks. The most 
important step in the whole process is creating 
deterministic input-outputs mappings from the 
stochastic process. The purpose of this step is to 
develop deterministic neural networks for defining 
all values of weights and parameters in the 
stochastic neural network. Karhunen-Loève 
theorem plays an important role in defining 
deterministic input-output mappings for 
developing deterministic neural networks as well 
as stochastic neural networks. 

Two successful examples are shown in this paper 
in order to confirm the validity of the proposed 
stochastic neural network. One example is to use 
the proposed stochastic neural network approach 
for simulating Sine function with random noise. 
This example is used to check whether the 
developed stochastic neural network can 
successfully model stochastic processes. From 
outputs of the proposed neural network, we will 
show that the developed stochastic neural network 
has a high accuracy in simulating stochastic 
processes or stochastic systems. The other example 
is to implement the proposed neural network in a 
real stochastic system: analysing and simulating 
localised displacement fields of wood in 
compression. Furthermore, this paper also provides 
a deep view of the network outcomes and internal 
workings of the network. 
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1 INTRODUCTION 

In the past, some stochastic mathematical models 
have been developed to display the arbitrarily 
inherent nature in a stochastic system and simulate 
the system behaviour over time (Bear et al., 1969; 
Wiest et al., 1969; Kulasiri and Verwoerd, 2002). 
A serious problem with these models is the 
difficulty in solving them analytically or 
numerically. ANNs have a high capability in 
approximating input-output mappings that are 
complex and nonlinear to arbitrary degree of 
precision. The incremental learning approaches 
used in ANNs make it possible for them to 
approximate all internal parameters iteratively and 
they solve some problems that cannot be solved 
analytically. These capabilities of neural networks 
make them suitable to address some of the 
problem related to stochastic models and develop 
neural networks that approximate random 
processes. However, current ANNs only focus on 
approximating deterministic input-output 
mappings. In fact, most ANNs operate in a 
stochastic environment where all signal could be 
inherently stochastic. Thus, it is necessary to 
develop a neural network which has the ability to 
learn stochastic processes or stochastic systems. 
Turchetti (2004) proposed a new class of neural 
networks called stochastic neural networks (SNNs) 
as a universal approximator of stochastic processes.  
His book (Turchetti, 2004) entitled “Stochastic 
Models of Neural Networks” has presented 
theoretical developments and a brief demonstration 
on the development of stochastic neural networks 
for a limited number of cases, but these cases have 
not used them to model natural, biological and 
environmental systems. 

In Turchetti’s book on SNNs, there are two 
different approaches to incorporate stochastic 
properties into a network: Brownian motion and 
white noise, which are two fundamental stochastic 
processes. Furthermore, Brownian motion is used 
to simulate continuous stochastic processes while 
white noise is used to simulate discrete stochastic 
processes. Turchetti (2004) has already given more 
information on how to use SNNs to simulate 
stochastic processes by means of Brownian motion. 
However, white noise is mainly used to develop 
SNNs for simulating a real stochastic process or 
stochastic system. For most real stochastic systems 
or stochastic processes, we can only collect a 
limited number of realisations from the system as 
the governing stochastic functions are unknown. 
These collected realizations are just recorded 
values at each discrete time or location of 
stochastic processes or stochastic systems. 

2 OBJECTIVES 

This study aims to develop and implement a 
stochastic neural network for representing natural 
real stochastic systems. The specific objectives are: 
to explore a method for developing a stochastic 
neural network based on white noise; confirm the 
validity of the proposed stochastic neural network 
by simulating a Sine function with random noise, 
and implement the proposed neural network for 
modeling noisy displacement fields of wood in 
compression. 

3 RELATED MATHEMATICAL 
BACKGROUND 

The Karhunen-Loève (KL) theorem is given a 
central role in exploring deterministic input-output 
mappings from stochastic processes or stochastic 
systems (Turchetti, 2004). Now let us consider a 
stochastic process )(tξ  and the covariance 
function of the stochastic process ),( stB  for 
different times t  and s . The KL expansion is a 
representation of a stochastic process as a linear 
combination of a finite number of orthogonal 
functions determined by the covariance function of 
this stochastic process (Gihman and Skorohod, 
1974).  As a result, a stochastic process can be 
expanded as the following equation (Eq. [1]) as 
well as the covariance function (Eq. [2]) 

),()()( λϕλζξ
λ

tt ∑
Λ∈

= ,                            [1] 

),(),(),( λϕλλϕ
λ

ststB ∑
Λ∈

= ,                       [2] 

where )(λζ  is an orthogonal sequence of random 
variables, the variance of )(λζ  is equal to the 
eigenvalues (λ ) of the covariance function of the 
stochastic process ( λλζ =})({ 2E ) and the bar 
denotes the conjugate complex quantity. ),( λϕ t  
are the eigenfunctions of the covariance function. 
Since ),( λϕ t  are deterministic functions, they can 
be modeled by neural networks. These networks 
can be linearly combined with noise )(λζ  as in Eq. 
[1] to develop stochastic neural networks. Thus, 
the first step in this method is developing 
deterministic input-output mappings from 
stochastic processes. 

4 METHODS 

4.1 Creating Input-output Mapping 

A stochastic process can also be viewed as a set or 
a bundle of realisations in finite domain. 
Furthermore, we can only collect some finite 
number of realisations from real stochastic 
processes or systems. For example, Figure 1 
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contains six realisations from the Sine function 
with random noise. 
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Figure 1.  A set of realisations from the Sine 
function corrupted by noise 

In this figure, all these realisations represent the 
behavior of the same Sine function but they also 
represent random fluctuations (y axis shows values 
of the Sine function). It is easy to see that the 
randomness becomes an inherent characteristic of 
this stochastic process. Following is a discussion 
on how to create deterministic input-output 
mapping using the KL theorem. The purpose of 
this is to develop deterministic neural networks. 

Now we already have a dataset with a bundle of 
realisations of a stochastic process )(tξ  and we use 

)(tkξ  as the thk  realisation. For each realisation, 
there are n  different discrete values corresponding 
to each discrete time t  and the value of n  depends 
on the time interval tΔ   as well as the total time T  
of the whole realisation (

t
Tn
Δ

= ). The focus of the 

following step is to find the relationship between 
any two discrete times for all realisations and get 
the covariance matrix of this stochastic process. If 
we define that )(tξ  at each discrete time t  is 
viewed as an input variable for the covariance 
function, each realisation )(tkξ  at each discrete 
time t  will be viewed as an element of each input 
variable. So we denote the whole group of input 
variables on the dataset by vector 

)}(),(),({)( 21 ntttt ξξξξ L=  where )( itξ  contains 

all values of realisations at the thi  discrete time 
i.e., )}.(),(),({)( 21

i
k

iii tttt ξξξξ L= In this vector 
representation, the mean and variance of all 
realisations at a particular discrete time it  and the 
covariance of all realisations between any two 
different discrete times it  and jt  can be efficiently 
calculated by using the following equations 
(Samarasinghe,2006):  

∑
=
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In Eq. [3], { })(,)(,)(,)()( 321 nttttt ξξξξξ L=  is a 
vector which contains all mean values of 

realisations at each discrete time it  and K  is the 
number of realisations in the dataset. In Eq. [4], 
COV is the covariance matrix which contains all 
variances and covariances. COV is a symmetric 
matrix with size nn×  where n is the number of 
time intervals on the whole time domain. The 
diagonals of COV represent variances and off-
diagonals represent covariances between any two 
different discrete times. 

According to KL theorem, we can transform the 
COV matrix into a new matrix with new scaled 
variables. In this new matrix, all variables are 
independent of each other and all variables have 
their own variance. Therefore, the covariance 
between any two new variables is equal to zero. 
The COV matrix can be represented by using the 
Karhumen-Loève theorem as 

)()(
1

ttCOV j

n

j
jj ϕϕλ∑

=

= ,                               [5] 

where n represents the total number of variables in 
the new matrix; jλ  represents the variance of the 

thj  rescaled variable and jλ  is also called 
eigenvalues of the COV matrix; and )(tjϕ is called 
eigenfunctions or eigenvectors of the COV matrix. 
The number of eigenfunctions depends on the 
number of discrete time intervals. We call this 
decomposition of the COV matrix the eigenvalue 
decomposition method. It is easy for us to get 
eigenvalues and eigenfunctions of the COV matrix 
using mathematical or statistical software. 

A stochastic process can be represented by the 
function 

 )()()(
1

j

n

j
j tt λζϕξ ∑

=

= ,                                       [6]                          

where )(tjϕ  is eignefunctions of the COV matrix; 

)( jλζ  is a stochastic measure defined on a second 
order random field. The property of this stochastic 
measure )( jλζ  depends on its mean and variance. 
It is not possible for us to simulate this stochastic 
measure because of its randomness. Therefore, we 
first create a number of deterministic neural 
networks to simulate eigenfunctions of the COV 
matrix. The number of deterministic neural 
networks is decided by the number of eigenvalues 
which play a significant role in the KL 
representation of these real realisations. The 
stochastic measure is then represented by White 
noise that is embedded into the network when an 
output for a set of inputs is generated by the 
network. White noise )( jλζ  is an element of a 
Gaussian distribution with zero mean and variance 
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2σ  which in this case is equal to the eigenvalue 
jλ .Thus, the input and output mappings of 

deterministic neural networks are eigenfucntions 
from the decomposition of the COV matrix when 
we use data collected from a real stochastic 
environment. 

4.2 Modelling  Deterministic Neural    
Networks  

After we define the input-output mapping of 
deterministic neural networks, the next step is to 
develop and model suitable neural networks to 
represent or mimic the patterns in the desired 
process )(tjϕ . There are three main deterministic 
neural networks for function approximation: 
Multilayer Perceptron Networks (Samarasinghe, 
2006; Cybenko, 1989; Funahashi, 1989; Hornik, 
Stinchcombe & White, 1989), Radial Basis 
Function Neural Networks (Park & Sandberg, 
1991) and Approximate Identity Neural Networks 
(Conti and Turchetti, 1994). All of them have 
powerful capability in approximating arbitrary 
deterministic input-output mapping. In this case, 
we develop a series of Approximate Identity 
Neural Networks (AINNs) to learn these 
significant eigenfunctions )(tϕ  obtained from the 
KL expansion of the COV matrix. 

The following three factors are the focus of 
modelling AINNs: the number of neurons needed, 
the structure of network and the learning algorithm. 
The number of neurons depends on the input-
output mappings. All these AINNs have the same 
structure: one input and one output with three 
layers. We use approximate identity functions 

⎟
⎠
⎞

⎜
⎝
⎛ −−

−⎟
⎠
⎞

⎜
⎝
⎛ +−

=
2

)(tanh
2

)(tanh)( σϑσϑω xvxvx  as our 

activation function. This function has the form of 
Gaussian distribution with special properties. The 
backpropagation algorithm, which is used to 
minimize the network’s global error between the 
actual network outputs and their corresponding 
desired outputs, is used as the learning algorithm 
in this case. The backpropagation leaning method 
is based on gradient descent that updates weights 
through partial derivative of the network’s global 
error with respect to the weights. When the 
learning step is completed, the weights of the 
network converge on the optimal values. As 
presented in Section 5, the proposed AINNs 
efficiently simulate all significant eigenfucntions.  

4.3 Modelling Stochastic  Neural    
Networks  

After the training of deterministic neural networks 
is completed, the adjustment of weights of the 

stochastic neural network has been completed. 
Now we need to obtain stochastic properties of the 
network by adding white noise processes into 
deterministic neural networks as shown in Figure 2. 
From the KL expansion of the covariance matrix 
for a stochastic process, it can be seen that the 
whole stochastic process can be regarded as the 
linear combination of the product of these 
independent eigenfunctions and their 
corresponding stochastic measure )(λζ  defined 
on the second order field. For these stochastic 
measures, their mean is equal to zero and their 
variances are equal to the corresponding 
eigenvalues. As a result, we can use white noise 
process to achieve the stochastic behavior of the 
corresponding networks because white noise 
processes have the same attributes of these 
stochastic measures. Figure 2 shows the structure 
of SNNs based on eigenfunctions and their 
corresponding white noise. In this figure, )(tξ  is 
the mean of the stochastic process at the time t . 
Now we have successfully developed a stochastic 
neural network. The next step is to choose some 
example stochastic processes or stochastic systems 
for confirming the validity of the proposed 
stochastic neural network.  

 

Figure 2.  The structure of SNNs 

5 RESULTS AND DISCUSSION 

Based on the mathematical developments for a 
stochastic neural network, some realistic examples 
are used to explain in detail every step of 
development of deterministic neural networks as 
well as stochastic neural networks. The first 
example is about using a stochastic neural network 
to simulate the stochastic Sine function model. Let 
us use the six extracted realisations from the 
stochastic Sine function model which is shown in 
Figure 1 as our data set. 

The first step in developing a stochastic neural 
network for this data is to calculate the covariance 
function of these six realisations in order to create 
input-output mappings for the networks from the 
real dataset by using KL theorem. We use Eq. [4] 
to calculate the covariance function or covariance 

  
)(tξM M

)(1 tϕ

∑

)( tξ

∑)(2 tϕ

)(tnϕ

t
)( 1λζ

)( 2λζ

)( nλζ
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matrix. The behavior of the covariance function for 
these six realisations is shown in Figure 3.  

Covariance Function
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Figure 3.  The covariance function of six 
realisations extracted from the stochastic Sine 

function model 

According to the KL theorem, the covariance 
function can be decomposed into a series of 
eigenvalues and the corresponding eigenfunctions. 
Figure 4 shows only the first five eigenvalues in 
the KL representation of the covariance function as 
the left 95 eigenvalues are zero. In this figure, it 
can be seen that only four eigenvalues are 
significant and together capture the total variance 
in the original data. As a result, we just focus on 
these four significant eigenvalues as well as their 
corresponding eigenfunctions.  
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Figure 4.  The significant eigenvalues in the KL 
representation of the covariance function 

The number of AINNs depends on the number of 
these significant eigenvalues. As a result, four 
individual AINNs are used to simulate the four 
eigenfuctions. Figure 5 shows the values of the 
four eigenfucntions as well as their corresponding 
AINN’s approximations. In the figure, the red lines 
represent eigenfucntion values determined by KL 
theory while the black lines represent the 
approximated outputs from the networks. Each 
AINN has a high accuracy of learning their input-
output mappings (the range of R2 is between 0.96-
0.97). 

The next step is to achieve stochastic properties of 
a neural network. According to KL expansion, a 
stochastic process can be viewed as the linear 
combination of the product of eignfuctions and 
corresponding stochastic measures. In terms of 
these stochastic measures, they have zero mean 
and their variance is equal to eigenvalues  
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Figure 5.  The four approximated eigenfucntions 
from AINN superimposed on eigenfunction values 

from KL expansion   

corresponding to the eigenfucntions. These 
stochastic measures have the same property of 
White Noise so we can use White Noise to 
represent these stochastic measures. As a result, 
the proposed neural network can be considered as 
the linear combination of the product of 
eigenfunctions and their corresponding White 
Noise. Figure 6 represents 10 realisations obtained 
from the developed stochastic neural network. 
They are remarkably similar to the realisations 
from the original function shown in Figure 1. In 
order to confirm the validity of the proposed 
stochastic neural network, we need to compare the 
covariance function of the proposed stochastic 
neural network with that from realistic realisations. 
Figure 7 displays the predicted covariance function 
for 200 realisations extracted from the proposed 
network. It can be seen that there is no difference 
between the predicted covariance function and the 
actual covariance function (Figure 3) from the real 
realisations of the stochastic Sine function model 
(R2 is 0.9). 
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Figure 6.  Ten realisations obtained from the 
stochastic neural network 

Approximated Covariance
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Figure 7.  The covariance function of the 

approximated Sine function as obtained from 200 
realisations of the stochastic neural network 
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Based on the first example, it can be seen that the 
proposed stochastic neural network has a high 
accuracy in simulating stochastic processes. Now 
we apply this idea to simulate and analyse 
localised displacement fields of wood in 
compression.  

Wood like most biological and cellular materials 
has a very complicated internal structure that leads 
to variability in properties. In a recent study, image 
processing methods have been used to obtain 
displacement fields in a very small area on the 
surface of a loaded wood specimen in compression 
parallel-to-grain (Samarasinghe & Kulasiri, 2000). 
This means that we only know the behaviour of 
this small area from each image. However, the 
stochastic memory of the stochastic neural network 
can help us to recall more realisations of the 
behaviour of this wood specimen based on the 
existing images in order to deeply analyse the 
structural influence on mechanical behaviour of 
wood. The wood specimen ( mm1364441 ×× ) in 
this project was cut from kiln-dried structural 
grade New Zealand radiate pine (pinus radiata) 
boards obtained from a local timber yard in 
Christchurch (Samarasinghe & Kulasiri, 2000). 
These were tested on a computer controlled 
material testing facility that measured the applied 
load while a camera took images of the specimen 
at various load levels. By comparing the displaced 
images to the initial undisplaced images for an area 
around mm2020×  using Digital Image 
Correlation (DIC), displacements of a large 
number of points were determined. The data 
determined this way contains two different 
displacements: vertical and horizontal 
displacements. Now we use the proposed 
stochastic neural network to analyse the structural 
influence on mechanical behaviour displacement 
of wood.  

When a 2kN compression load is applied parallel-
to-grain, vertical displacement (u) measures the 
amount of contraction in the same direction of 
loading while horizontal displacement (v) 
measures the amount of expansion in the 
perpendicular direction to loading. Figure 8 shows 
both vertical and horizontal displacement obtained 
from images using the DIC method. Here, one 
vertical displacement realisation corresponds to 
points along one column and one horizontal 
displacement realisation to one row of the image. 
Furthermore, x axis shows the total number of 
uniform interval ( mm67.0 ) on the analytical area.  
In this figure, it can be seen that the influence of 
structure in loading parallel-to-grain on horizontal 
displacement is more complex and fluctuating than 
on vertical displacement. 

According to KL expansion, we decompose the 
covariance function of both vertical and horizontal 
displacements in order to create deterministic 
input-output mappings. In terms of vertical 
displacement, we only got three significant 
eigenvalues from the distribution of all eigenvalues 
(30) from the KL expansion of the covariance 
function. However, we found that eight significant 
eigenvalues capture the variance in the original 
data for the horizontal displacements (the total 
number of eigenvalues is 30). The number of 
significant eigenvalues also display that there is a 
lot of noise or complexity in the horizontal 
displacement. Thus, we need to develop three 
AINNs for the vertical displacement and eight 
AINNs for the horizontal displacement to 
approximate their corresponding eigenfunctions. 
When the learning step is completed, most 
components of the proposed stochastic neural 
network have already been determined and we 
need to add the relevant white noise into their 
corresponding AINNs in order to achieve 
stochastic properties of the network as depicted in 
Figure 2. 
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Figure 8.  Vertical and horizontal displacement 
profiles for a wood specimen loaded 2kN in 

compression  

Figure 9 displays the covariance function of 
vertical displacement as well as horizontal 
displacement.  

Figure 10 displays some realisations obtained from 
the developed stochastic neural network for the 
vertical displacement as well as the horizontal 
displacement. They are remarkably similar to the 
actual realisations shown in figure 8. 
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 Figure 9. (a) Covariance function of the vertical 
displacement (u); (b) Covariance function of the 

horizontal displacement (v) 
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Figure 10.  The approximated vertical and 
horizontal displacements from the stochastic 

neural networks 

Figure 11 shows the approximated covariance 
functions from the stochastic neural networks.  
Compared to Figure 9, it can be seen that the 
stochastic neural networks have a high accuracy in 
approximating the experimental dataset (the range 
of R2 is between 0.91-0.92).  

Furthermore, through analysis of internal workings 
of SNNs, we get the following properties of SNNs: 
a. The output of SNNs is a linear combination of 

the mean value at each discrete position and the 
summation of the product of each 
eigenfunction and their corresponding white 
noise at the same discrete time; 

b. Values of white noise are constant in the same 
realisation. The difference between each 
different position depends on their 
corresponding mean values as well as 
eigenfunctions; 

c. Values of white noise are stochastic between 
any two different realisations. This is the 
reason why each realisation is different.  
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Figure 11.  (a) The approximated covariance 
function of the vertical displacement (u); (b) The 

approximated covariance function of the horizontal 
displacement (v) 

6 CONCLUSION 

The purpose of this research is to present the 
mathematical developments and implementations 
of stochastic neural networks based on a realistic 
dataset from a stochastic system. Two examples in 
this paper provided enough evidence to confirm 
the validity of the theoretical results as well as give 
us more confidence in developing a stochastic 
neural network to simulate some real stochastic 
systems and stochastic processes. The proposed 

stochastic neural network can be viewed as a 
suitable tool to capture the complexity of system 
behaviour and simulate natural and biological 
phenomena. 
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