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EXTENDED ABSTRACT

Creating networks of protected nature reserves is the
primary means of reducing biodiversity loss. The
principle focus of the reserve design literature is on
determining which sites to reserve to maximise the
number of species conserved. A good reservation
policy is one that conserves as many species as
possible. Until recently, most site selection models
have been static: they assumed that sites threatened
by development would be reserved immediately after
the optimal plan is determined. This rarely occurs
in practice, often because there are insufficient funds
available when the optimal plan is determined, or
because not all sites are immediately available to
be reserved. But once postponed, the reservation
decisions might never be implemented if the targeted
sites become developed first.

Development often takes the form of a contagion
process in which the sites most likely to become
developed are near sites that have already been
developed. This pattern is evident, for example, in
Rondonia in Brazil, where the proximity of a site to
the nearest deforested area is a strong determinant
of the site’s probability of being cleared. The
strong dependence of site development risk on the
site’s proximity to cleared forest has also been found
in more heavily developed countries such as Costa
Rica. Importantly, this “spreading contagion” form
of deforestation is found in much of the Brazilian
Amazon and other “frontier forests”, which are the
last remaining large tracts of ecologically intact forest.
If such forests are to be conserved in efficient way, it
is essential that interdependencies in site development
risks be considered. Graph-theoretic models are
thus important for addressing ecological management
problems in which connectivity among sites and their
dynamic properties need to be considered.

Recently, several dynamic reserve site selection
models of increasing complexity based on stochastic

dynamic programming (SDP) have been proposed,
allowing to model very large spatially explicit
problems. Approximate heuristic solution methods
and more recently simulation-based Reinforcement
Learning (RL), have been developed. Here, we
present the first application of this RL method to
a (very) large realistic example. Namely, we used
available data concerning Costa-Rica forest cover type
and changes between 1997 and 2000 and required
forest types and minimum areas for the persistence of
90 species of birds and mammals living there, in order
to build a large SDP model. The complete model is
huge since more than 19000 sites are modelled and the
available yearly funding allows to conserve hundreds
of hectares each year. Thus even RL method cannot
solve such problems.

To overcome the induced complexity, we propose to
split the country in different zones containing a few
hundreds threatened sites each and in which one site
could be reserved each year. In this paper we illustrate
our approach on one of these zones, containing 309
sites and 75 species present, 51 of each can be
preserved. We now plan to deal with the full scale
problem. Indeed, rather than considering completely
independent subproblems of tractable sizes we will
consider their dependencies and model the problem
of efficiently allocating funds for reservation between
zones each year.
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1 INTRODUCTION

The primary means of reducing biodiversity loss is
to create networks of conservation reserves. In most
cases, the establishment of a reserve network is a
gradual, accretive process, comprising a sequence of
land acquisitions through time. One of the reasons
for this is that not all sites are available for purchase
at the same time (Meir et al. (2004)); another reason
is that funding for site acquisitions at any given
time is insufficient to acquire all sites (Costello and
Polasky (2004)). Conservation organisations that
build reserve networks over an extended period of
time must contend with the risk that sites will be
developed before they can be reserved (Costello and
Polasky (2004); Meir et al. (2004)).

Recently, dynamic models based on stochastic
dynamic programming (SDP) have been used to
solve reserve selection problems of this type (Meir
et al. (2004); Costello and Polasky (2004); Sabbadin
et al. (2007)). In these models, unreserved sites
are irreversibly developed each year with a given
probability, but only a limited number of sites can
be reserved each year, because of budgetary or site-
availability constraints. The problem is to design
a dynamic reservation policy that results in the
maximum expected number of species conserved at
the end of the problem horizon. These models are
used to investigate the importance of the timing of
selections in habitat conservation programs. Most
models consider a random development pattern, in
which development probability for each site is inde-
pendent of the development status of neighbouring
sites. However, it is more likely that development
will occur as a “contagion” process, beginning when
new roads make regions economically and logistically
accessible (Laurance et al. (2004)).

Sabbadin et al. (2007) propose to consider develop-
ment as a contact process over a graph, and propose
site selection algorithms based onreinforcement
learning techniques (Bertsekas and Tsitsiklis (1996)).
The purpose of this paper is to illustrate the site
selection method proposed by Sabbadin et al. (2007)
with a case study based on deforestation and birds
species requirements data concerning Costa-Rica
forests. In a first step, we recall the site selection
model of Sabbadin et al. (2007) and the RL-based
site selection technique and then we will describe the
Costa-Rica case study.

2 DYNAMIC RESERVE SELECTION MODEL

The dynamic reserve selection model described in
(Sabbadin et al. (2007)) is inspired from the one
of Costello and Polasky (2004), but here space is
represented explicitly, by a connectivity graph over

sites. Indeed, the considered area where a reserve
is to be built is represented by a network (or graph)
G with J vertices (the sites which can be selected).
A symetric connectivity matrixG(J × J) specifies a
neighbourhood relation:G(j, j′) = 1 if sites j and
j′ are neighbours, andG(j, j′) = 0 if not. Then, we
define the neighbourhood of a sitej asN(j) = {j′ ∈
1 . . . J,G(j, j′) = 1}.

At a given time periodt, any sitej can be in one
of the three following states :developed, reserved
or unreserved. Thus, the stateSt of sites can be
unambiguously described by the means of two of the
three vectorsDt, Rt, Ut whereDt(j) = 1 means that
site j is developed, andDt(j) = 0 means that it is
not. Rt andUt model whether sites are reserved or
unreserved. It is clear that for any sitej, exactly one
of Dt(j), Rt(j), Ut(j) equals one, and the two others
equal zero. Thus we defineSt = (Dt, Rt).

Now, in the site selection model, two distinct elements
have to be considered: i) the state dynamics (under
a site selection policy) and ii) the impact of this
dynamics on the persistence of the species we wish
to protect.

Let us first describe the state dynamics model. The
state of sites will evolve over time under the influence
of two types of factors: controlled and uncontrolled
factors.

- Controlled factor. At any time period, it is possible
to select one unreserved site for reservation, thus
changing its state fromunreserved to reserved.
- Uncontrolled factor. At any time periodt, it is
assumed that any unreserved sitej which is not
selected for reservation can become developed at the
end of the period with a known probabilitypj .

At every time stept, an action is chosen, consisting
in selecting an unreserved siteat ∈ {1 . . . J} for
reservation (Ut(at) = 1). Then, Rt+1(at) = 1
and Ut+1(at) = 0 (the site becomes reserved).
Development occurs concurrently and randomly on
non-selected unreserved sites: All unreserved sites at
time t which are not being selected for reservation
have a probability to become developed. Here we
assume that development is a contagion process :
the probability that an undeveloped sitej becomes
developed depends on the development status of the
neighbours of j, N(j). This is the first use of the
neighbourhood relation. More precisely, we assume
that we have a model of the development probabilities
of any undeveloped sitej given the state of the sites
in its neighbourhood:pj(St+1(j) = D|St(j) =
U, St(N(j)), at) whereSt(N(j)) = {St(j

′), j′ ∈
N(j)}.

At this point, it should be noticed that development
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and reservation are assumed to be irreversible :
a developed or reserved site remains in this state
forever. Thus, the development / reservation process
will always end in anabsorbing state in which no
unreserved site persists and the absorbing state will
be reached in a number of time steps bounded by
the number of sites since at each time step one
undeveloped site becomes irreversibly reserved.

Now, let us describe how we model the impact of
the state of sites on species existence in a given
region. We consider thatI species can live in the
region. For each species, only part of the sites form
a suitable environment for persistence (food, habitat,
etc.). Thus, another matrix,M(J×I) specifies which
sites are suitable for which species:Mji equals 1 if
sitej is suitable for speciesi, and 0 if not.

It is assumed that a speciesi can exist in sitej if and
only if site j is not developed (i.e. is in statereserved
or unreserved). In addition, it is often assumed that
species need a minimum connected area of suitable
environment to persist. Therefore, in our model we
consider explicitly the area of the sites (A(j) is the
area of sitej) and for each speciesi, a minimum
required area MRA(i). Speciesi will be definitely
protected when a connected subnetwork of reserved
sites of total area at leastMRA(i) is reserved. Note
that in our model, the same connectivity matrixG
over sites is used for modelling both the development
contact process and the site connectivity relation.
However, this is not required in order to apply our
model.

The objective of a reserve selection problem is of
course to minimise species losses, or equivalently to
maximise the number of species present in reserved
sites when the process has reached an absorbing state
(all sites are either reserved or developed). Our goal is
to find apolicy π assigning to any possible stateSt a
site to reserve. Such a policy should be defined so as to
maximise the expected value of the number of species
reserved when an absorbing state of the process is
reached. From now on, we give up the subscriptt

in the notations of the state and action variables for
sake of simplicity since i) the process is assumed to be
stationary (transitions and rewards do not depend on
time) and ii) it can be shown (see Puterman (1994))
that optimal policies are in this case stationary. We
finally define areward function r(S, a) as the number
of additional species which are protected when sitea

is reserved in stateS.

Now, let us consider atrajectory τ , that is an
alternate sequence of states and actions, starting in
an arbitrary stateS0 and ending in an absorbing state
Sk : τ = (S0, a0, S1, a1, . . . , Sk−1, ak−1, Sk). We
define thevalue V (τ) of such a trajectoryτ as the
number of species eventually protected at the end of

the trajectory. Thus,V (τ) is exactly the number
of species protected in stateSk. The following
equality can be easily shown, which will be used in
the dynamic programming solution method for the
reserve selection problem :

∀τ = (S0, a0, S1, a1, . . . , Sk−1, ak−1, Sk),

V (τ) =

k−1
∑

i=0

r(Si, ai).

A fixed policyπ does not define a single trajectoryτ
when applied in a start stateS, but rather a probability
distribution over a set of possible trajectories. The
valueVπ(S) of this policy is defined as the expected
number of new species which can be protected by
applyingπ, from start stateS :

Vπ(S) = E
[

V (τ)|S, π
]

whereE[V (τ)|S, π] is defined over the set of possible
trajectories generated by policyπ applied in initial
stateS.

There exists, in theory, a policyπ∗ maximisingVπ for
all states. However, it is a difficult task to compute it
when the number of sites is to high. It soon becomes
even impossible to express such a policy in tabular
form. Therefore, in the next Section we show how
to compute an approximately optimal policy using a
parameterised reinforcement learning algorithm.

3 PARAMETERISED REINFORCEMENT
LEARNING SOLUTION METHOD

Reinforcement learning is a set of simulation-based
methods which allow for the solution of large-scale
Markov Decision Problems (Bertsekas and Tsitsiklis
(1996)), such as the reserve site selection problem we
are interested in.

When solving a problem expressed as before, the
optimal policyπ∗ can be computed fromVπ∗ as:

π∗(S) = argmax
a

{

r(S, a)+
∑

S′

p(S′|S, a)·Vπ∗(S′)}

(1)
In the RL approach, the optimal value functionVπ∗

is approximated by a (linear) parameterised value
function Vε∗ which is computed through repeated
simulations of trajectories. Then, a policyπε∗ , is
computed fromVε∗ using Eq. (1) whereVπ∗ is
replaced withVε∗ . πε∗ approaches the optimal policy
π∗. One further problem is that computingπε∗ from
Eq. (1) is itself a difficult task, since the number
of sitesS′ that can be immediately reached fromS
can be huge. So, that computation is often performed
by sampling over the possibleS′, using the transition
probabilityp.
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In the following we describe how a parameterised
linear approximation of the optimal value function is
computed, and how to computeonline the next site to
reserve in the current state of the region.

For very large SDP problems, such as the reserve
selection problem, when the number of sites is
large, it is not convenient to compute the exact
optimal value functionVπ∗ in tabular form. It
may be more reasonable to look for an approximate,
parameterised, value functionVε∗ , which can be
expressed much more concisely thanVπ∗ itself. A
linear approximation ofVπ∗ is often used, searched
for in the set of parameterised value functions of the
form

Vε(S) = ε(1)ψ1(S) + . . .+ ε(k)ψk(S).

Theε(i), i ∈ {1, . . . , k} are parameters and theψi are
arbitrarily given real-valued functions calledfeatures
(Bertsekas and Tsitsiklis (1996)).

Then, the objective of feature-based reinforcement
learning algorithms is to compute a parameters vector
ε∗ such thatVε∗ is a reasonable approximation of
Vπ∗ . The general way is to use a simulation of the
controlled process in order to compute a sequence of
parameters vectors(εn), in the form

εn+1 = εn + ∆(Sn, an, Sn+1, r(Sn, an))

where ∆(Sn, an, Sn+1, rn(Sn, an)) is a correction
factor computed from the output of the current
simulation trial. The most common implementation
of the above principle is thegradient descent method,
where updates take the form:

εn+1 = εn + αn(Rn − Vεn
(Sn))∇εn

Vεn
(Sn).

whereRn is a direct estimation of the value ofVπ∗

drawn from the current trial and past experience. A
simple such estimation consists in using

Rn = max
a

r(Sn, a) + Vεn
(Sn+1).

Now, one simple case offeatures is of particular
interest (Tsitsiklis and Van Roy (1996)). This is the
one in which theψn take their values in the set{0, 1}.
In this case, the above equation simplifies into

∀i ∈ 1, . . . , kεn+1(i) = εn(i)

+αn(max
a

{r(Sn, a)+Vεn
(Sn+1)}−Vεn

(Sn))ψi(Sn).

This will be the parameters update function which we
will use to solve the reserve selection problem.

Now, let us describe the approximation structure in the
reserve selection problem. In this problem, we choose
to use the followingJ features:ψi(S) = 1 if site i is
not developed, andψi(S) = 0 if it is developed, for
i = 1 . . . J . Thus,ψi(S) = ψi(S(i)) only depends

on the state of sitei, and not on the global state of
the problem. In addition, concerning the learning rate
parameterαn, which should simply decrease to 0 asn
grows, we choose to define it asαn = 1

n(a) , i.e. the
number of time sitea has been reserved so far, during
the learning phase of the algorithm.

4 A RESERVE SELECTION PROBLEM IN
COSTA RICA

In the remaining of the paper we show an
implementation of the RL approach described above
to a reserve design case study concerning Costa Rican
forests. This case study is built from two sets of
data. The first is a GIS data set used for building a
deforestation model over the Costa Rican forest, and
the second comprises the life traits of tenths of birds
species living in this forest. We next describe the GIS
data set which was available and show how it was used
to build the contagion deforestation probabilities used
in our RL model.

4.1 Building the deforestation probabilities

Development often takes the form of a contagion
process in which the sites most likely to become
developed are near sites that have already been
developed. This pattern is evident, for example, in
Rondonia in Brazil, where the proximity of a site to
the nearest deforested area is a strong determinant
of the site’s probability of being cleared (Arellano-
Neri and Frohn, 2001; F.J.B. and J.P., 2007). The
strong dependence of site development risk on the
site’s proximity to cleared forest has also been found
in more heavily developed countries such as Costa
Rica (Robalino and Pfaff, 2005). Importantly, this
“spreading contagion” form of deforestation is found
in much of the Brazilian Amazon (Laurance et al.,
2004) and other “frontier forests”, which are the last
remaining large tracts of ecologically intact forest. If
such forests are to be conserved in efficient fashion, it
is essential that interdependencies in site development
risks be considered. Green et al. (2005) identified
graph-theoretic models as an important method for
addressing ecological management problems in which
connectivity among sites and their dynamic properties
need to be considered. We use a GIS data set
comprising 4 layers (Robalino and Pfaff (2005)),
that describes the changes of forest cover in Costa
Rica between years 1997 and 2000, to estimate the
probabilities involved in the contagion process:
1) Forested area 1997 : 15856 polygons showing
forested areas.
2) Area deforested between 1997 and 2000 : 3261
polygons.
3) Reserved areas : 32 (large) polygons.
4) Region types : 12 different types (mountain-wet,
mountain-dry, etc.).
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Figure 1. Deforested area between 1997 and 2000.

Figure 1 shows forested areas in 2000 (in green), as
well as sites deforested between 1997 and 2000. By
merging the four layers we were able to draw a map
comprising 19165 polygons, each representing one
site. For each site, in addition to its geometry, we
know its status (R, D or U), the type of region it is
in (mountain, lowland, wet, dry...) and its area. Note
that the sites are of very different sizes, varying from
a few hectares for many of them, to more than 100000
ha for a few of them.

We assumed in our model that the deforestation
probabilities for a given undeveloped site were
functions of site-specific parameters and of its
neighbouring environment. More precisely, in order
to measure the effect of neighbour sites, we draw a
connectivity graph between sites. For each site we
draw a disc, which centre is the centre of gravity of
the polygon representing the site and which surface is
1.5 that of the polygon. Two sites are neighbours if
their associated disks intercept. Using this method,
the average number of neighbours for a given site
is 29.5. However, large sites can have up to 3142
neighbours, while half of the sites have at most 18
neighbours. From this graph and other GIS data we
derive a logistic model of the deforestation probability
of a given (U)ndeveloped sitei:

logit(pi) = α1Ai +α2DBi+α3Ni +β(RT (i)) (2)

Ai is the area (in ha) of sitei. DBi is the distance
of site i to the closest “big site”. A site is considered
“big” if its size exceeds 1000 ha (there are 158 such
sites in the map). The big sites were found to have
a very low probability to become developed, and their
proximity was shown to influence a site’s development
probability. Ni is a variable measuring the potential
impact of the developed neighbours of sitei on its
probability of development:

Ni =
∑

j∈N(i),Sj=D

log10Aj .

Ni is thus a function of the state of the neighbours of
i. It represents the contribution of thecontagion effect
to the development probability of an undeveloped site.
Finally, β is a vector of 12 parameters, one for each
region type (RT (i) is the region type of sitei).

The parametersα1, α2 and the additional parameter
vector β were adjusted by logistic regression by
comparing the sites which were undeveloped in 1997
and became developed in 2000 with the ones which
remained undeveloped. Note that in our study we
consider a time step of 3 years between each reserve
selection decision is implemented.

The results of the logistic regression are summarised
in Table 1. The significance of the parameters
was measured by the range of the development
probabilities, marginalised over the different factors.
The third and fourth columns in Table 1 give those
ranges, for the observed values of the parameters.
These probabilities show that all parameters have an
influence on development probabilities, and should be
taken into account.

Table 1. Deforestation probabilities estimation.

Variable Coef. Pmin Pmax

Ni −3.9 × 10−4 0.00 0.07
DBi 2.12 × 10−5 0.07 0.16

β(RT (i)) 0.2 to 14.8 0.00 0.18
Ai −2.5 × 10−6 0.00 0.007

Overall 0.00 0.22

Figure 2 shows a map obtained after simulation of
the deforestation process, given the above described
model, after a ten steps run (30 years).Over that
period, 8380 sites, totalling 65000 ha (0.35% of the
forested area) were developed. This is in line with
the current estimates of the deforestation rates in the
literature (2000 to 3000 ha/y).

Figure 2. Deforested area after a simulated 30 years
scenario.
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4.2 RL reward model

In the Costa Rica reserve selection problem,
expert knowledge on birds species requirements was
available, summarised in an excel file indicating for
each species the total (connected) area which has to
be reserved in suitable regions for guaranteeing its
persistence. In addition, for each species is indicated
which types of regions are suitable. Table 2 shows an
extract of the file.

Table 2. Area required (in ha) and suitable area type :
PMR = pre-mountain, L = lowland, R = rainforest, W
= wetland.

Name min area requirement
Orange-billed Sparrow 19 PMR
Brown-billed Scythebill 21 PMW or PMR

Olive Tanager 19 PMR
Azure-hooded Jay 17 LMR

From this table, we computed for each species
and after each simulation step, the area of the
largest connected network of suitable reserved sites
remaining (using the same connectivity function as
for the contagion process). When this area meets the
requirement (column one, in hectares), the species is
considered as protected and a reward of 1 is received.
Thus, after a given simulated trajectory, the total
reward equals the number of birds species protected
in the corresponding reserve network.

4.3 RL solution for the reserve selection problem

Our objective was to run the RL algorithm described
in the previous section to the whole Costa Rica
problem. However, it became quickly obvious that the
method was not applicable to problems comprising
more than 1000 sites. Furthermore, our RL algorithm
assumes that one site is reserved at a time, which is not
realistic in the Costa Rica problem in which enough
money is available for reserving a dozen of mean size
sites during each time step. For these reasons, we
chose to split the problem by considering several small
(with a few hundred mean size sites) regions, and
looking for independent policies within each region.
A further advantage of using thisdivide and conquer
strategy is that it favours conservation of birds species
all over the Costa Rica territory, and not only locally,
making persistence more robust.

We next show the results obtained within one such
small region comprising 309 sites (Figure 3 shows
where the region is located and Figure 4 shows the
detail of the considered region). In this region, 85
sites are not suitable for any bird species. Overall,
75 species could live in that region, however the

Figure 3. Area selected for RL illustration.

minimum area requirements are met for only 54
species. Thus, any site selection policy can at best
protect 54 species. The RL algorithm converged to a

Figure 4. Detail of the selected area. Colours
represent region types.

vector of valuesε∗ within a few hours.ε∗ indirectly
represents a site selection policy. We then evaluated
this policy by simulation. The result of one simulation
run (50 3-years steps) is represented in Figure 5.

Figure 5. One 150 years simulation run. Black:
deforested, red: reserved, green: unreserved.
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We also evaluated our algorithm by plotting the
number of species protected over time, averaged over
ten runs (Figure 6), together with the mean squared
error. Note the very specific form of this curve. In
the first steps of the simulation, sites are selected
greedily with respect to the number of species which
can be immediately protected. These species which
have a low minimum area requirement are protected
first as they would be, using a greedy policy. Then,
after 3 or 4 steps, there only remain species needing
a large area to become protected. Several sites
have to be selected before any additional species is
protected. This corresponds to the plateau in Figure
6, during which the number of protected species does
not change. In the mean time, sites may become
(randomly) developed, and the effect of this random
development will only be seen later (steps≥ 15)
when the total reserved area is sufficient to protect new
species. It is only at that time that the curves for the
various runs diverge. Note that for a greedy strategy
the initial rise of the curve would certainly be similar,
however the plateau would be longer and the last part
of the curve would lie below the one represented here.

Figure 6. Number of species protected over time.

5 CONCLUDING REMARKS

We have presented here an illustration of the RL
method proposed by Sabbadin et al. (2007) for solving
reserve site selection problems. Our point was
mainly to assess the efficiency of the method and its
scalability. In a first step we designed an automated
method, based on GIS data exploitation for building
a model of the development dynamics. We then
collected from the literature some data about species
requirements, which we used to build an immediate
reward function. The scalability of the method was
then assessed and it turned out that we could solve
efficiently problems comprising several hundred sites
and for which one site only could be selected at a time.

In order to solve really large scale problems
(thousands of sites, dozens being reserved each
time step), which is our objective, we have two

options at hand: i) either grouping sites together,
thus considering morecoarse grained problems,
with fewer sites and fewer site selection options
and ii) adopt adivide and conquer strategy, by
considering separately in parallel several subregions
between which funding is shared once and for all and
independent site selection policies are computed. We
are currently exploring both options, but maybe in the
future ahierarchical approach, common in Artificial
Intelligence problems would be the best: solving
a simplified coarse grained problem for deciding
on global funding allocation between subregions
and then solving in parallel several corresponding
subproblems, using the approach exposed here.
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