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EXTENDED ABSTRACT

Regarding the management of diseases in agriculture,
collective control strategies should be more efficient
than individual strategies. Indeed, epidemics can
spread over whole agricultural areas. A local
strategy, at the scale of a single or few crop fields,
ignoring the global disease dynamics will not be
optimal. However, the complex, large-scale and
multi-factorial spatio-temporal processes involved in
the development of pathogen populations make it
difficult to efficiently design long-term strategies
for collective management of diseases. We have
recently developed a Graph-based Markov Decision
Process (GMDP) framework for the modelling and the
sequential optimisation of controlled Markov spatial
processes. This framework is well adapted to the
case of diseases management in agriculture: spatial
interactions are easily modelled and integrated control
methods can be taken into account. Furthermore,
resolution algorithms for GMDP are more adapted to
the scale of pest management problems than classical
MDP.

In this paper we examplify the approach on a case
study: the optimal long term management of blackleg
on canola (also known as phoma stem canker on
oilseed rape) at the scale of an agricultural area (≈
100 km2). Blackleg is one of the main diseases
of canola worldwile and generates important yield
losses. Sustainable agriculture requires to reduce the
use of fungicides to control diseases. Alternative
control methods to chemicals are genetic, cultural,
physical or biological. We hereby consider a simple
model with two management decisions: cultivar
choice (with or without a specific resistance) and
soil tillage (with or without ploughing). Specific
resistance can be broken down if the cultivar is over
exploited. Its intensive use can lead to a reinforcement
of the epidemic and finally at long-term horizon to a
decrease of the producers’ incomes. Resistance and

gain are linked. The objective is thus to globally
maximise producers’ long-term incomes, taking into
account resistance durability. We present here how
to represent this problem in the GMDP framework.
Space is discrete and represented by a graph were
vertices are crop fields. Epidemic dynamics are
modelled by a stochastic and spatially explicit process
built on epidemiological and agronomic knowledge on
production of inoculum, spores dispersions, infection
and efficiency of ploughing regarding stubble burial.
Producers gross margins include the market price and
the potential yield for each canola cultivar, the relative
yield loss due to blackleg and the tillage cost. The next
step will be to solve the GMDP problem and to assess
the quality of the computed strategies by simulation.

We believe that this approach, even if illustrated
on a simplistic example, is appropriate to identify
pathways towards integrated, collective and durable
disease management.
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1 THE AGRONOMIC PROBLEM

1.1 Epidemiology of blackleg on canola

Blackleg (or Phoma stem canker), caused by
the Leptosphaeria maculans,/L Biglobosa complex
species, is one of the main diseases of canola
(Brassica napus) worldwide (Fitt et al., 2006). It
generally generates moderate to significant yield
losses but can, in extreme situations, completely
destroy canola fields. For instance, it has been
estimated that the mean French yield loss ranged from
5 to 20%, depending on the year (Aubertot et al.,
2004a).

Epidemics of blackleg are initiated by infected stubble
present at soil surface that produce ascospores after
a period of maturation (West et al., 2001; Khangura
et al., 2007). These spores are wind-dispersed and
produce leaf spots on seedlings and young plants.
From these spots, asexual secondary cycles occur. The
spores created from these leaf spots are dispersed by
splashing and are therefore spread over the same plant
or to immediate neighbouring plants. Once the fungus
has infected a leaf, it systemically colonises the plant
and produces a canker located at the basal stem and
the crown. At crop re-growth, these cankers will alter
the hydric and mineral alimentation of plants, thus
altering yield formation.

Severe cankers lead to major lodging, thus increasing
yield losses by making harvesting more difficult. In
worse cases, these cankers literally cut the stems. The
infected stubble left at soil surface after harvest will
produce primary inoculum for the next season.

1.2 Control methods

The main method to control blackleg on canola is
genetic by use of specific or quantitative resitance.
Several specific resistances exist but can be broken
down in a few years (Rouxel et al., 2003). Contrary
to specific resistances, quantitative resistances do
not prevent leaf infections, but significantly reduce
canker severity. They are usually polygenic and
are thought to be more durable than specific ones.
Chemical control of blackleg can be obtained
by seed treatments, coated fertiliser granules or
fungicide sprays on crop or stubble (West et al.,
2001). However, chemical control efficiency is
somewhat uncertain because molecules are effective
only for a few weeks whereas spore emissions are
spread over several months in autumn. Several
micro-biological control agents that might control
blackleg development have been tested in laboratory
conditions, but none of these agents are currently used
by farmers to control blackleg (Aubertot et al., 2006).

It appears therefore important to improve the cultural
control of the L. maculans/L. Biglobosacomplex
species. Cultural control consists in adapting one or
several cultural operations (crop sequence included)
that do not correspond to a chemical, biological,
genetic or physical control operation aimed at limiting
pest populations.

In the case of blackleg, stubble management is
certainly the most critical point (Schneider et al.,
2006). Indeed, it has been shown that it was
the distance to infected stubble, not extended
rotation length that could limit epidemics of blackleg
(Marcroft et al., 2004). Therefore, whenever possible
soil tillage should be adapted to limit the quantity of
infected stubble left at soil surface. This will reduce
the quantity of available primary inoculum for the
considered region. The choice of the sowing date also
greatly influences epidemics of blackleg (Aubertot
et al., 2004b). It should maximise the separation
between the period of highest crop susceptibility and
the initial flush of ascospores. It has also been
demonstrated that over-fertilisation of the preceding
crop should be avoided, along with large organic
matter supply during the summer preceding canola
establishment.

At the regional level, crop and pathogen dynamics
are linked since spores are wind-dispersed all over
the region. Hence, blackleg appears difficult to
manage just by combining genetic, chemical and
cultural control at the field level. On the contrary,
collective strategies at a regional level should be
much more effective, but tools are lacking to help
define such strategies. We present in the following a
simplified problem of collective and durable blackleg
management. Then we describe its representation
in the framework of graph-based Markov decision
processes in order to illustrate the potential of this
model to identify pathways towards management
strategies for diseases in agriculture.

1.3 A simplified problem of collective and
durable blackleg management on canola

We consider a simple situation where only two control
methods are considered: genetic and cultural. We will
seek for annual strategies among combinations of the
two following actions: i) choice of the canola cultivar
ii) choice of a severity threshold to decide wheter to
plough or not after canola harvest. These actions are
applied yearly at the scale of a crop field. Cultivar
choice impacts on disease severity and yield loss.
Both cultivar choice and ploughing have an effect on
the amount of primary inoculum the following year.

Regarding canola genetic species, we consider only
one specific resistance and a choice between two
canola cultivars: resistant and susceptible, the
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former associated with a lower potential yield. The
pathogen population is composed of two pathotypes:
virulent and avirulent on the considered resistance.
The susceptible cultivar can be infected by both
pathotypes, while the resistant cultivar can only be
infected by the virulent one. The use of a resistant
cultivar reduces the amount of inoculum present in
the crop by preventing the avirulent pathotypes to
reproduce. This choice can lead to a higher yield
even if the potential yield is initially lower. However,
this generates a strong selection pressure on blackleg
pathotypes and modifies the genetic structureGS(i)
(proportion of virulent pathotypes) of the pathogen
population in the fieldi. A consequence can be a
rapid breakdown of the specific resistance. If the
choice of the resistant cultivar can be optimal on a
short term basis, it may not be the case for long-term
management.

The second control action is ploughing. Ploughing
after harvest always reduces stubble left at soil surface
and thus limits future inoculum, without modifying
the genetic structure of the pathogen population. This
has to be balanced with the cost for ploughing. We
propose to perform ploughing according to the disease
severity (as a threshold). After harvest, disease
severity can be assessed by a simple index (G2

index), ranging from 0 to 9. This index is obtained
by measuring the average proportion of stem cross-
sections which have been damaged by the infection
(Aubertot et al., 2004d).

A three-years crop rotation is in use for each field
in the region we consider (centre of France). Fields
are alternatively seeded with canola, then wheat, then
barley. This rotation is fixed once and for all, as well
as the initial pattern of crops over the whole region. At
the beginning of a cultural season, primary inoculum
is produced on wheat fields (on the canola stubble
left on soil surface at the end of the previous season).
Canola fields are contaminated by spores from wheat
fields. we chose to define a time step (betweent and
t+1) as the period from a sowing date to the next one.
A cultural season is represented on Figure 1, showing
when action choices, dispersion and rewards occur.

The annual dynamic of the disease can now be
defined. The different steps are i) inoculum
production in wheat fields, ii) ascospores dispersion
from wheat field towards canola fields and iii)
infection and (potential) stubble burial (see Figure 2).
The mathematical modeling of these three steps will
be described in section 3.

In summary, for this simple management problem, the
state variables are, for all fields,i) the current crop
(canola, wheat, barley) ii) for wheat crops, the disease
infection index (G2), and the proportion of virulent
spores (GS)on stubble from the previous crop. The

Figure 1. Spore dispersal and crop management of
canola fields. Orange, light green and dark green
fields are respectively wheat, canola and barley fields.
The field is seeded with canola at timet, and with
wheat at timet + 1. The choice for control actions
is made at timet and their effect occur betweent and
t + 1. Rewards are estimated after harvest.

action variables are, on canola fieldsi) the cultivar
choice (resistant, suceptible) and ii) the threshold
τ ∈ [0, 9] on the disease severity index for performing
ploughing (that is, ifG2 ≥ τ at harvest).

2 GRAPH-BASED MARKOV DECISION PRO-
CESSES MODEL

2.1 Definition

In its classical formulation (Puterman, 1994), a
stationaryMarkov Decision Process(MDP) is defined
by a four-tuple< X ,A, p, r >, whereX represents
the finite set of admissible states of the system,A the
finite set of applicable actions,p : X × A × X →
[0, 1] the transition probabilities between states, and
r : X × A → R an “immediate” reward function.
Note that bothp(x′|x, a) andr(x, a) are independent
of the decision staget.

A functionδ : X → A assigning at each time step an
action to every state, is called a (stationary)policy.
The value functionof a policy vδ : X → R is
defined so thatvδ(x) represents the infinite horizon,
discounted cumulative reward attached to a policyδ

applied to a MDP, with initial statex. This value can
be computed as:

vδ(x) = E
[

∞
∑

t=0

γtr(xt, δ(xt))|x0 = x
]

. (1)

The expectation is taken over all possible trajectories
with initial statex0 = x. The factor which ensures
that the above infinite sum converges is the discount
factor0 ≤ γ < 1.

The problem of finding an optimal policy with respect
to the discounted criterion (1) can be written as:
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Figure 2. Schematic representation of the three steps
involved in the annual dynamics of blackleg. Actions
have no effect of dispersion but can limit infection as
well as the inoculum production for the following year

Find δ∗ : X → A, so that

vδ∗(x) ≥ vδ(x), ∀ x ∈ X , ∀ δ ∈ AX .

This problem is classically solved by Stochastic
Dynamic Programming algorithms (Puterman, 1994)
such as the Policy Iteration algorithm.

In this article, we consider the situation where the
statex ∈ X is multidimensional, and the coordinates
are not independent. They are locally interacting
and the interaction network can be represented by a
graph. The transition probabilities and the rewards
are local according to the graph structure. A GMDP
(Peyrard and Sabbadin, 2006) is defined by a 5-tuple
< X ,A, p, r, G >, the state space is a Cartesian
productX = X1 × . . .×Xn, and the action space is a
Cartesian productA = A1× . . .×An. G = (V, E) is
an oriented graph, defined by a set of verticesV =
{1, . . . , n} and a set of (oriented) edgesE ⊆ V 2.
An edge(i, j) means that nodei influences nodej
(i is a parentof j). A neighbourhood functionN is
defined overV as the set of parents of a given node :
∀ i ∈ V, N(i) = {j ∈ V, (j, i) ∈ E}

In a GMDP, transition probabilities and rewards are
local according toG:

Definition 1 (Local transitions)
Let< X ,A, p, r, G > be a GMDP. Transitions
are said to belocal iff for all x = (x1 . . . xn), x′ =
(x′

1 . . . x′
n) ∈ X , a = (a1 . . . an) ∈ A,

p(x′|x, a) =

n
∏

i=1

pi(x
′
i|xN(i), ai),

where ∀ I ⊆ {1, . . . , n}, xI = {xi}i∈I . Let

us introduce the following characteristics of the
GMDP: σ = maxi |Xi|, α = maxi |Ai| and ν =
maxi |N(i)| (ν is the maximum degree of a node
in the graph). With this factored representation, the
space complexity of the representation ofp is now
O(n ·σν+1 ·α), instead ofO((σ2 ·α)n) for a classical
MDP.

Definition 2 (Local rewards) Let < X ,A, p, r, G >

be a GMDP. Rewards are said to belocalwhen∀ x =
(x1 . . . xn) ∈ X , ∀ a = (a1 . . . an) ∈ A,

r(x, a) =

n
∑

i=1

ri(xN(i), ai).

On Figure 3 are illustrated the dependency graph
over the variables inX , as well as the dependencies
induced by the local transition and reward functions.

Figure 3. GMDP graph representation.Xi, Ai and
Ri are respectively local states, actions and rewards.
Edges represent local dependencies.

2.2 Search for an optimal policy

In the general case, policies for a GMDP take the form
δ = (δ1, . . . , δn), whereδi : X → Ai. The policy at a
given node depends on the global state of the GMDP.
Such global policies can take space inO(n · σn) (at
most) to be expressed. This is prohibitive, except
for very low dimensionality problems. The time
complexity for computing the optimal global policy
is also a limit. For solving a GMDP problem, we limit
the search among a sub-class of policies, calledlocal
policies. They take space inO(n ·σν ) to be expressed.

Definition 3 (Local policy) In a GMDP
< X ,A, p, r, G >, a policyδ : X → A is said to be
local iff δ = (δ1, . . . , δn) whereδi : XN(i) → Ai.

An approximate Policy Iteration algorithm has been
proposed in Peyrard and Sabbadin (2006), based on
the search of an (a priori sub-optimal) policy among
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the local ones. It leads to a time complexity linear in
n (but exponential inν) instead of exponential for the
exact algorithm.

3 A GMDP MODEL FOR MANAGING
BLACKLEG ON CANOLA

We present in this section the definition of the five
elements of a GMDP for the simple problem of
management of blackleg on canola using genetic and
cultural control.

3.1 State and action spaces, graph

A state variablexi is defined for each crop field.
ThusX = X1 × . . . × Xn, wheren is the number
of fields. As mentioned before, the state at time t,
xt

i, describes first the crop present in fieldi between
times t and t + 1. Then, if the crop is wheat,xt

i

describes as well the disease severity index (G2(i))
and the genetic structure (GS(i)) on the field at time
t (resulting of the blackleg infection on canola in the
same field the previous cultural year). Since the state
space of variables is finite in a GMDP, the domains of
G2 andGS have to be discretised. In order to keep
reasonable sizes for state variable domains, we chose
respectively 3 and 5 classes (see Figures 4 and 5).
In order to account for possible long-range dispersal,
we assume that no field can be totally immune from
being infected. This corresponds to the lowestG2

class groupingG2 indices from 0 to 3.

Figure 4. Discretisation of the domain of the disease
severity index.

Figure 5. Discretisation of the domain of the genetic
structure of the pathogen population. Percentage
represent percentage of virulent pathogens.

Finally xi can take 17 values: 3G2 values times 5GS

values if the current crop is wheat, plus 2 values for
non-wheat crops (canola and barley). The state space
size of the GMDP is17n.

The setAi of possible actions on fieldi is empty if
the crop is wheat or barley. This latter fact will be
integrated in the model when describing transitions
and rewards.

If the crop is canola, actions are combination of 1)
choice of the resistant or the susceptible cultivar (we

will denote CC(i) the cultivar choice for fieldi),
2) the threshold for ploughingST (i) ∈ {1, . . . , 4}.
The threshold values are in accordance with the
discretisation ofG2: if ST (i) = k, ploughing occurs
if and only if G2 ≥ k. Ploughing always occurs
if ST (i) = 1 and never ifST (i) = 4. There are
2 × 4 = 8 possible actions for each wheat field: two
choices forCC(i) and 4 choices forST (i).

The next item to define is the graphG that represents
possible interactions between fields. The interactions
between fields are due to the possible dispersion of
ascospores lying on canola stubble, still present on
the surface of wheat crops at timet, towards canola
fields at timet. According to available knowledge
on the distance of spores dispersion, we will consider
that two fields are neighbours only if they are distant
of less than 500 meters (Marcroft et al., 2004). This
includes fields sharing a boundary. In addition, a
field i belongs toN(i), since its own state at time
t influences its state at timet + 1. Finally, only a
subset of this geographical (symetric) neighborhood
is considered: a fieldj is parents of a fieldi only if j

is a wheat field wheni is a canola field. The resulting
graph is thus oriented. This allows to spare space for
storing the transition probabilitiespi.

3.2 Transition probabilities

Let us now define the transition probabilities
pi(x

′
i|xN(i), ai). If xi = barley or xi = wheat,

transitions are deterministics and the next statex′
i will

be respectivelyx′
i = canola andx′

i = barley. When
xi = canola then x′

i can take one of 15 possible
pair values(G2(i), GS(i)) since the following crop
will be wheat. The statex′

i depends stochastically
on xN(i), the severity of the disease and the genetic
structure of the neighbour wheat fields ofi. It depends
also on the chosen action for fieldi (CC(i), ST (i))
since both cultivar choice and tillage may decrease
the resulting potential severityG′

2(i) and modify the
genetic structureGS′(i) of the pathogen population.

Computation ofpi(x
′
i|xN(i), ai) is decomposed in

three steps (see Figure 2):

i) inoculum production: computation of ascospore
production on the infected stubble (number of
ascospores) in the wheat fields neighbours ofi,
according to theirG2 value,

ii) dispersion: computation of ascospores (number
and genetic structure) dispersed on fieldi from
these neighbouring fields,

iii) infection and effect of actions: computation of
x′

i = (G′
2(i), GS′(i)) after the cultural season.

This is a function of the outputs of step ii) and
also of the chosen action (CC(i), ST (i)).
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We defer the full exposure of these three steps to a
longer version of the paper, for sake of brevity, and
present here the main principles. Step i) is stochastic
while ii) and iii) are deterministic. First, it is too
simplistic to assume that infection is homogeneous
on any given field. In addition, dispersion curves are
usually defined for a source of small size. We consider
a finer grain that the one used for state description
and discretize fields into elementary units (or pixels)
which themselves can be considered homogeneous
from the point of view of dispersion and infection.
Dispersion is computed from pixels to pixels (Figure
6) and results are agreated afterwards.

Figure 6. Example of discretisation of the crop fields
into 9 pixels and dispersion between two pixels.

Stepi) inoculum production
Let us consider a wheat fieldj in the neighbourhoodof
the canola fieldi. We model the number of ascospores
produced on a pixelk of field j by a Gaussian law
of meannspores and fixed variancevspores. The
mean valuenspores is obtained from experimental
epidemiological data (unpublished data), as a function
of G2(j). The Gaussian law is the same for all pixels
of field j. We will also consider, for computational
reasons, that the pathogen population produced has
the same genetic structure at each pixel, equal to
GS(j).

Stepii) dispersion
From each pixel, dispersion of a spore can be
efficiently modeled by a half-Cauchy probability
density function of parameterα (Diggle et al., 2002):

f(d) =
2

απ
(

1 + ( d
α
)2

) .

whered is the distance between the pixel source and
the pixel where ascopores land. For a pixell of
the canola fieldi, the number of spores landing by
dispersion from the wheat fields can be computed as a
weighted (by the cauchy distribution) sum of Gaussian
random variables. It is again a Gaussian variable
whose mean and variance are easily computed as
functions of nspores and vspores. The distribution
of the genetic structure of the population of pixell

can been computed similarly since this variable is a
weighted average of the genetic structure of the source
pixels. Finally, the distributions of total number of
spores and genetic structure at the scale of the canola
field are easily derived from the distributions at the
pixels level.

Stepiii) infection and effect of actions
Action ai then modify deterministically the genetic
structure: if the cultivar is resistant, avirulent
spores cannot reproduce and 100 % of the pathogen
population is virulent. If the cultival is susceptible, the
genetic structure computed at step ii) is not modified.
Then,G′

2(i) is computed as a deterministic function
of the number of spores (total number of virulent
spores if cultivar is resistant) and the threshold chosen
for ploughing. This function has been derived from
previous modeling works on the link between the
severity of blackleg on canola depending on the
number of spores arriving in a field by dispersion
(Aubertot et al., 2004c) and on the efficiency of
stubble burial (Schneider, 2005; Schneider et al.,
2006).

Finally, transition probabilitiespi(x
′
i|xN(i), ai) can

easily be derived by integration of the joint
distribution law of the number of spores and the
genetic structure over the appropriate class intervals.

3.3 Reward function

In the GMDP framework global rewards are expressed
as a sum of local rewards of the formri(xN(i), ai). To
defineri, we consider thegross marginGM(i) of a
producer associated to fieldi.It is computed as:

GMi = βi ∗
[

Ypot(CC(i)) ∗ RY L(Ĝ2(i)) ∗ πc

−(C0i + C(Wi))
]

where

• βi is field i surface (ha).

• πc is the market price of 100kg of canola seeds.

• Ypot(CCi) is the potential yield for cultivar
CC(i) ( expressed in102kg/ha).

• RY L(Ĝ2) is the relative yield loss when
the observed severity at harvest (modified by
cultivar choice) isĜ2(i). Note thatĜ2(i) and
G′

2(i) are different if ploughing is performed.

• C0i is the cost/ha of basic operations (it may
only depend on the field).

• C(Wi) is the additional cost/ha of ploughing
(Wi is 0 if no ploughing is performed, 1
otherwise).

SinceWi is a function ofTS(i) and ofĜ2(i), GMi

actually depends not only onxN(i) but also onx′
i. In

order to match wit the GMDP framework, we define
ri(xN(i), ai) as the expectation ofGMi overx′

i. It can
be shown that this does not modify the solution of the
GMDP problem.
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4 WORK IN PROGRESS AND PERSPEC-
TIVES

In this article, we have defined a GMDP model for
the problem of collective and durable management
of blackleg in canola crops. This model is currently
being implemented under Scilab. Next step is the
resolution of the GMDP problem and identification
of the main features of the returned strategies for
cultivar choice and ploughing. They will be evaluated
by simulation of the agronomical model and by
comparison with expert control strategies currently in
use.

The problem studied is a simplified version of
reality. In particular, integrated management was
demonstrated as crucial for efficient plant disease
management. This aspect is not present in the current
model since we consider only specific resistance and
stubble burial as possible actions. However the model
can be easily extended to more realistic actions.

This approach appears promising to identify pathways
towards integrated, collective and durable plant
disease management.
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