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EXTENDED ABSTRACT

Since the introduction of the Autoregressive Con-
ditional Heteroscedasticity (ARCH) model of Engle
(1982), the literature of modelling the conditional
second moment has become increasingly popular in
the last two decades. This popularity is reflected
by the numerous volatility models being proposed in
the literature and their multivariate counterparts (see
McAleer (2005) for an excellent survey on the various
volatility models and related issues on estimation and
specification). Interestingly, the Quasi Maximum
Likelihood Estimator (QMLE) with normal density
is typically used to estimate the parameters in these
models. As such, the higher moments of the
underlying distribution are assumed to be the same
as the normal distribution. However, various studies
reveal that the higher moments, such as skewness and
kurtosis of the distribution of financial returns are not
likely to be the same as the normal distribution, and
in some cases, they are not even constant over time.
This has significant implications in risk management,
especially in the calculation of Value-at-Risk (VaR),
which focuses on the negative quantile of the return
distribution. Failed to accurately capture the shape
of the negative quantile, which is determined by the
skewness and the kurtosis of the distribution, would
produce inaccurate measure of risk, and subsequently
lead to misleading decision in risk management.

This paper proposes a general framework to model
the distribution of financial returns using Maximum
Entropy Density (MED). The main advantage of MED
is that it provides a general framework to estimate
the distribution function directly based on a given set
of data, and it provides a convenient framework to
model higher order moments up to any arbitrary finite
orderk. However this flexibility comes with a high
cost in computation time ask increases, therefore
this paper proposes an alternative model that would
reduce computation time substantially. Moreover,
the sensitivity of the parameters in the MED with
respect to the dynamic changes of moments is derived
analytically. This result is important as it relates the
dynamic structure of the moments to the parameters
in the MED.The usefulness of this approach will be

demonstrated using 5 minutes intra-daily returns of
the Euro/USD exchange rate.
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1 INTRODUCTION

Modelling conditional second moment has now
become a standard practice in analysing financial time
series following the success of the Autoregressive
Conditional Heteroscedasticity (ARCH) model of
Engle (1982) and the Generalized ARCH (GARCH)
model of Bollerslev (1986). A natural extension to
modelling time varying second moment is to model
the dynamic of higher order moments such as the third
and fourth moments, which relate to the skewness
and the kurtosis of the underlying distribution,
respectively. However, the values of the third and
fourth moments are pre-determined by the first and
second moments under the standard assumption of
normality. Although empirical evidence, such as
Mandelbrot (1963) and Mandelbrot (1967), show
that the normality assumption is often unrealistic for
financial time series, the parameters of most volatility
models, especially those belong to the GARCH-
family, are typically estimated by Quai Maximum
Likelihood Estimator (QMLE) with normal density.
Moreover, Value-at-Risk (VaR) forecasts based on
the normality assumption often leads to excessive
violation due to the restrictive assumptions on
the third and fourth moments, see for example
da Veiga et al. (2005). This is particular important as
VaR has now become a standard tool for forecasting,
evaluating and managing market risk (see Jorion
(2000)), excessive violation would imply that the VaR
forecasts were consistently underestimating market
risk, which could lead to devastating consequence
for the financial market. Therefore, it is important
to improve the methodology for VaR forecasts by
accommodating the higher order moment structure
and consider more flexible distributions.

The standard approach to relax the normality
assumption in the literature is to replace the normal
distribution by more flexible distributions, see for
examples, Bollerslev (1987), Nelson (1991), Hansen
(1994) and Harvey and Siddique (1999). Although
these studies considered more flexible distributions
with the possibility of time varying higher moments,
the distributional assumption may still be too
restrictive for the following reasons: (i) these
distributions usually only allow the first four moments
to be time varying, and the values of the higher
moments are subsequently pre-determined by the first
four moments; and (ii) the properties of the associated
(Quasi) Maximum Likelihood Estimator ((Q)MLE) is
unclear, especially if the distribution assumption was
violated.

In a seminal paper, Rockinger and Jondeau (2002)
proposed to estimate the distribution function directly
using Maximum Entropy Density (MED). The main
advantage of MED is that it provides a general
framework to estimate the density function directly

based on a given set of data, and it provides a
convenient framework to model higher order moment
up to any arbitrary finite orderk. That is, it is
possible to investigate the dynamic nature of higher
order moments up to any finite orderk using MED.
More importantly, it is possible to determinek before
specifying the dynamic structure of the moments
using techniques such as those proposed in Wu
(2003). However, this flexibility comes with a high
cost in computation time ask increases.

The aim of this paper is to propose a flexible
framework to estimate MED for financial returns
accommodating the dynamic structure of higher order
moments. Moreover, the new specification reduces
the computation burden substantially relative to the
standard approach. It is much simpler to implement
in practice and it also avoids various computational
issues caused by the Stieltjes and Hamburger moment
problems. Moreover, the sensitivity of the parameters
in the MED with respect to the changes of moments
is derived analytically. This result is important as it
relates the dynamic structure of the moments to the
parameters in the MED. The empirical usefulness of
the model will be investigated using 5 minutes intra-
daily Euro/USD exchange rate data.

The paper is organised as follows: Section 2
introduces the concept of Maximum Entropy Density
and its estimation methods, with a special emphasis
on the computational issue as well as various
specifications for the dynamic of higher order
moments. A new model will be introduced in Section
3. This is followed by an empirical example in Section
4 and Section 5 contains some concluding remarks.
The proofs of all the Propositions are omitted due to
page constraints but they are available upon request.

2 MAXIMUM ENTROPY DENSITY

The basic idea of Maximum Entropy Density (MED)
is to estimate the density function by maximising a
certain entropy functional subject to a set of moment
constraints. Shannon (1948) proposed the following
entropy functional:

E = −
∫

A

p(x) log p(x)dx, (1)

to measure the difference in the information content
between the densityp(x) and the density for the
uniform distribution, whereA denotes the appropriate
set in which the integration takes place. The
motivation of the Shannon’s entropy relies on the
fact that the uniform distribution is used in the
absence of any information and therefore, the distance
betweenp(x) and the uniform density would provide
a measure of information content inp(x). Given this
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interpretation, it would then natural to estimatep(x)
by maximising its information content through a set
of moment constraints. This is equivalent to maximise
equation (1) subject to a set of moment constraints up
to orderk, namely

p(x) = argmax
p

−
∫

A

p(x) log p(x)dx

subject to
∫

A

p(x)dx =1 (2)
∫

A

xip(x)dx =mi i = 1, .., k

where mi denotes theith raw moment of the
distribution. Since the moments of a distribution can
be estimated through a given set of data, therefore
MED essentially provides a density that capture as
much information from the data as thek moments
could provide.

The conventional way to solve the optimisation
problem (2) is to define the following Hamiltonian:

H(p) = −
∫

A

p(x) log p(x)dx + λ′

0

(
∫

A

p(x)dx − 1

)

+

k
∑

i=1

λi

[
∫

A

xip(x)dx − mi

]

,

(3)

where the maximisation ofH(p) can be easily
solved using calculus of variation, which leads to the
following closed form solution:

p(x) = exp(λ0) exp

( k
∑

i=1

λix
i

)

(4)

where λ0 = λ′
0 − 1. Since

∫

p(x)dx =
1, it is straightforward to show thatexp(λ0) =
[ ∫

A
exp

(
∑k

i=1
λix

i
)

dx
]−1

. Thus, the MED is
defined to be

p(x) = Q−1 exp

( k
∑

i=1

λix
i

)

(5)

where Q =
∫

A
exp

(
∑k

i=1
λix

i
)

dx. It is
straightforward to show that the density of the normal
distribution is a special case of equation (5). The
following propositions are useful for examining the
properties of MED relative to the normal density:

Proposition 1. For k = 4, the Maximum Entropy
Density as defined in equation (5) is an even function
and hence symmetric around 0 if and only ifλ2 < 0,
λ4 ≤ 0, λ1 = 0 andλ3 = 0.

Proposition 2. The Maximum Entropy Density as
defined in equation (5) is equivalent to a normal
distribution,N(λ1/2λ2, 1/2λ2) if and only ifλ2 < 0
andλit = 0 ∀i = 1, ..., k, i > 2.

Proposition 2 implies that ifk = 4 andλ3 6= 0 or
λ4 6= 0 then the Maximum Entropy Density is non-
normal.

Obviously, the Lagrange multiplier,λi is a nonlinear
function of the moments,mi, for all i. Therefore if
there is a dynamic structure underlying the moments,
then theλi must also be time-varying. This can be
seen formally from the following proposition:

Proposition 3. Let µi denotes theith moment of a
MED andλi be the parameters in the MED, fori =
1, .., k. If µ2k < ∞ then

∂λi

∂µj
= (µi+j − µiµj)

−1 ∀i, j = 1, ..., k.

Therefore the values of the language multipliers,λi,
i = 1, ..., k will be affected by any changes in any of
the moments. Thus, if the moment changes over time,
then theλi will be affected accordingly. Hence, the
MED at a given timet is

p(xt) = Q−1
t exp

( k
∑

I=1

λitx
i
t

)

dxt. (6)

whereQt =
∫

A
exp

(

∑k
I=1

λitx
i
t

)

dxt. Note that

if k is even, then a sufficient condition forQt <
∞ is λkt < 0 for all t. Rockinger and Jondeau
(2002) proposed to a set of parametric models for
the dynamic of the first four moments,k = 4.
The parameters in the model can then be estimated
by standard Maximum Likelihood approach with
density equal to the corresponding MED as given in
equation (6). While this approach is conceptually
straightforward and easy to understand, it imposes
significant computational burden on the estimation of
the parameters. Under the time varying assumption of
the moments, the estimation of MED would require
the computation ofλit for everyt at every iteration in
the optimisation routine. Since there is no closed-form
solution for λit given a set of moments,{mit}k

i=1,
for k > 2, the computation ofλit must rely on
numerical procedure. This makes the parameter
estimation a time consuming exercise, and may not be
feasible for large sample set such as those typically
seen in financial time series. Another drawback of
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imposing dynamic structure on the moments directly
is related to the Stieltjes and Hamburger moment
problems. Essentially, the problem seeks to find the
necessary and sufficient condition in which a sequence
of number,{mi}k

i=1, must satisfy in order to ensure
the existence of a proper density function such that its
ith moment ismi for i = 1, ..., k. Although such
conditions were derived in Mead and Papanicolaou
(1984) and Frontini and Tagliani (1997) , it is virtually
impossible to restrict the parameters so that the model
could always produce a sequence of number that
satisfies the conditions for everyt.

In order to resolve these issues, this paper propose to
model the dynamics ofλit directly. This method only
requires the computation ofλit once and therefore
significantly reduces the computation time. Model
specification and estimation issues will be discussed
in the next section.

3 A MODEL

Let λt = (λ1t, ..., λkt)
′ andmt = (m1t, ..., mkt)

′.
Consider the following specification for the dynamic
of λt:

λt = Ω +

p
∑

j=1

Θjmt−j +

q
∑

l=1

Γlλt−l (7)

where Ω is a k × 1 vector, Θj and Γl are k × k
matrices for j = 1, .., p and l = 1, ..., q,
respectively. Letvec()̇ denotes the vec operator
of a matrix, the parameter vector,Θ =
(Ω′, vec(Θ1)

′, ..., vec(Θp)
′, vec(Γ1)

′, ..., vec(Γq)
′)′,

can then be estimated by minimising the Hellinger
distance, which leads to the Minimum Hellinger
Distance Estimator (MHDE) as follows:

Θ̂ = argmin
Θ

T
∑

t=1

∫

A

(p̂(xt)
1/2−p(xt)

1/2)2dxt, (8)

where

p̂(xt) = Q̂−1
t exp

( k
∑

i=1

λ̂itx
i
t

)

(9)

such that

λ̂t = Ω̂ +

p
∑

j=1

Θ̂jmt−j +

q
∑

l=1

Γ̂lλt−l

Q̂t =

∫

A

exp
(

k
∑

i=1

λ̂ix
i
)

dx.

Moreover,p(x) can be constructed using the estimated
moments from the sample. Consider the standard raw
moment estimator

m̂it = t−1

t
∑

τ=1

xi
τ , ∀i = 1, .., k, (10)

λit can then be calculated numerically based on
m̂it. Rockinger and Jondeau (2002) provides an
excellent account on the different efficient methods to
computeλit given a set ofm̂it. More importantly,
following the result from Mead and Papanicolaou
(1984), Rockinger and Jondeau (2002) proved that
the correspondingλit exists and is unique given a
sequence of moments, for alli = 1, ..., k.

Given the recent availability of intra-daily data, the
MED can be constructed based on sample moments
from intra-daily data for every day, then the dynamic
of the MED can be modelled directly using equation
(7) and the parameter estimates can be obtained
through MHDE as defined in equation (8). This is the
methodology used for the empirical example in this
paper.

Divide the total trading time in a day intoh equally
spaced intervals and letpt,j and pt,j+△ denote the
price of a particular asset at the beginning and the end
of the jth interval in dayt, respectively for allt =
1, ..., T andj = 1, ..., h, that is, the price of the asset
is being recorded on equally spaced intervals,h + 1,
times a day, forT days. Note thatpt,j+△ = pt,j+1.
Then the return within each interval can be calculated
as

rt,j = 100 log(pt,j+△/pt,j), ∀j ≥ 2 (11)

which producesh intra-daily returns for allt =
1, .., T . The sample moments, and subsequently, the
associatedλit and the entropy density of the daily
return can then be constructed based on theh intra-
daily returns for allt = 1, ..., T . Given the set of
λit, the parameters in model (7) can then be estimated
using the MHDE as stated in equation (8). The
procedure can be summarised into the following steps:

Step. 1 For everyt = 1, ..., T , calculate the intradaily
return using equation (11).
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Step. 2 Calculate thek sample moments,mit,
i = 1, ..., k using the intradaily returns as
calculated in Step (1) for everyt = 1, ..., T .

Step. 3 Computeλit for i = 1, ..., k given the sample
momentm̂it, for everyt = 1, ..., T .

Step. 4 Given the set ofλit, constructp(xt) for every
t = 1, ..., T .

Step. 5 Estimate the parameter vectorΘ by min-
imising the Hellinger distance as defined in
equation (8).

Notice this approach allows the specification ofλit

to be flexible with minimum computational cost.
Using the theorems derived in Beran (1977), (see
also Chandra and Taniguchi (2006)), the MHDE for
Θ, Θ̂, as defined in equation (8) is shown to be
asymptotically normal, that is

√
T (Θ̂ − Θ)

A→

N

(

0, 4−1

[
∫

A

(

∂p̂(xt)

∂Θ

)(

∂p̂(xt)

∂Θ

)′
∣

∣

∣

∣

Θ=Θ̂

dx

]−1)

.

(12)

Given, Θ̂, λ̂it can then be calculated using equation
(7), and hence the estimated MED can then be
constructed using equation (9).

4 EMPIRICAL RESULTS

This section provides an empirical example of
estimating MED incorporating higher conditional
moment using intradaily data of exchange rate
between Euro and US dollar. The data used in
this paper was collected through the Philadelphia
exchange with the exchange rate being recorded every
5 minutes from 3/1/2005-3/6/2006. As a result, there
are 84 intra-daily returns for each day over 330 days,
which makes 27,720 observations in total. For this
empirical example,k = 4, p = q = 1 and the
coefficient matrices,Θ1 andΓ1, are restricted to be
diagonal matrices, that is

λit = ωi+θimit−1+γiλit−1 ∀i = 1, .., 4. (13)

All the estimation in this paper was conducted using
Ox version 4.10 and the computing codes are available
upon request. Since most of the integrals required
for the estimation do not have closed form solutions,
integration must be computed numerically. The
implication is that, even thoughA = (−∞,∞) in

the present context, it is necessary to restrictA into
a bounded interval. In this paper, integration were
computed using the Newton-Cotes approximation
with A = [−10, 10]. The range was chosen so that an
unit expansion in the range resulted in less than10−6

changes in the final values in integration.

Figure 1 contains the plots of 330 days sample
moments calculated using 84 intra-daily returns for
each day, where Figure 2 contains the sample
estimates of mean, variance, skewness and kurtosis of
the return distribution for each day. As shown in both
figures, the mean, the third moment and subsequently
the skewness are all centered around 0 indicating the
distribution of daily returns are symmetric on average.
However, the plots also reveal two negative outliers
in the third moment, and subsequently the skewness.
Interestingly, these two outliers in the third moment
(skewness) match by the two positive outliers in the
fourth moment (kurtosis) as shown in Figures 1 and 2.
Moreover, the dynamic of the second moment and the
variance follow quite closely to the typical financial
time series for returns, especially the clustering of
high and low volatility.

Figure 3 contains the plots of the correspondingλt for
t = 1, ..., 330. Notice all λ4t < 0 for all t which
satisfiesQt < ∞ for all t and therefore MED exists
for everyt. Interestingly, whileλ1t andλ3t fluctuate
around 0 and do not exhibit any definitive pattern, both
λ2t andλ4t exhibit pattern very similar to the pattern
found in the variance and kurtosis. However, it is
important to note that eachλit is a function of all four
moments, so it would be misleading to associateλit

with the moment of a particular order.

Table 1 contains the parameter estimates for equation
(13) by minimising the Hellinger distance as defined
in equation (8) with the corresponding t-ratios in the
parenthesis. Interestingly only three parameters are
significant, namely,ω2, ω4 and θ2. This has the
following implications about the distribution of the
daily return for Euro. Firstly, onlyλ2t evolves over
time, as onlyθ2 is significant. Secondly, sinceω3, θ3

andγ3 are not statistically significant, implying that
λ3t is 0 on average. Moreover, bothλ2t andλ4t are
negative∀t. Therefore, the distribution of the daily
return for Euro is symmetric on average. Thirdly,
Proposition 2 implies that the distribution of the daily
return for Euro is non-normal sinceω4 is statistically
difference from 0 indicatingλ4t is not 0 on average.

For the purposes of demonstration, Figures 4 and 5
contain the plots of the estimated MED, MED and the
distribution of the Euro/USD exchange rate under the
assumption of normality for 3/6/2006. As shown in
Figure 4, the shape of the estimated MED resembled
closely to the MED, which exhibited a small negative
skewness which could not be captured by the normal
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Figure 1. Daily Sample Moments
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Figure 2. Description Statistics
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Parameters Estimates
ω̂1 0.0380

(1.151)
ω̂2 -4.446**

(-16.566)
ω̂3 -0.039

(-0.258)
ω̂4 -0.549**

(-8.356)
θ̂1 0.052

(0.877)
θ̂2 0.192**

(2.715)
θ̂3 -0.024

(-0.427)
θ̂4 -0.012

(-0.219)
γ̂1 1.251

(1.717)
γ̂2 0.559

(0.423)
γ̂3 0.047

(0.099)
γ̂4 0.023

(0.708)

Table 1. Parameter Estimates
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Figure 4. Estimated Maximum Entropy Density
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Maximum Entropy Density
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distribution. Moreover, the MED also has a much
thicker negative tail than the normal distribution. This
implies that the empirical distribution suggested a
much higher probability for a negative return than it
is implied by the normality assumption. This has
also been captured by the estimated MED which
has a slightly thicker tail at the negative quantile
than the normal distribution. This suggests that the
estimated MED as proposed in this paper can capture
the probability of negative return more accurately than
the standard assumption of normality.

5 CONCLUSIONS

This paper proposed a new method to analyse the
distribution of financial time series using Maxi-
mum Entropy Density by accommodating potential
dynamic structure of higher order moment. The
new method is more computational efficient than
the conventional MED methods. The dynamic
structure of the moments are modelled through
their corresponding parameters in the MED. The
parameters in the model are then estimated through
minimising the Hellinger Distrance (MHDE). The
usefulness of this approach was demonstrated by
using 5 minutes intra-daily data of the Euro/US
exchange rate. The results provide useful insight into
the dynamic of the distribution for Euro/US exchange
and showed that the method proposed in this paper can
improve the accuracy in modelling the probability of
negative returns.
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