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EXTENDED ABSTRACT 

There is a growing interest in knowing the 
uncertainty in flood forecasting and the resulting 
flood warnings. This is borne out of the fact that 
the processes involved in flood forecasting have 
inherent uncertainties in them. The procedure used 
in flood forecasting consists of a number of steps. 
The first step is rainfall measurement and 
forecasting rainfall during a flood event. The 
rainfall is then transformed into flow using a 
combined water balance and runoff-routing model. 
There are uncertainties associated with rainfall 
measurement/forecasting, model and flow 
measurements. 

The Ensemble Kalman Filter (EnKF) and its 
derivatives are used widely in real time flow 
forecasting and it was decided to evaluate the 
performance of EnKF for Australian data. In an 
earlier study, three variations of EnKF were 
applied to the May 2003 flood event in Georges 
River in Sydney, Australia. In this study, four 
variations of EnKF were applied to four flood 
events in Gudgenby River in Canberra, Australia. 

The probability distributed moisture (PDM) model 
was used to transform the rainfall to discharge. 
The resulting discharge from the PDM model was 
updated using the EnKF. The four variations of 
EnKF considered in this study were the state 
updating, parameter updating, dual (state-
parameter) and dual (parameter-state) updating. 
The performance of EnKF was evaluated using the 
root mean sqauare and the coefficient of efficiency 
for 1, 3, 6, 9 and 12-h lead time forecasts. Also, 
the error in peak magnitude and peak timing error 
were also used in the comparison.  

Of the four variations considered, the parameter 
updating performed the best in terms of RMSE, 
coefficient of efficiency and peak error. The 1, 3 
and 6-h lead time forecasts are shown in Figure 1 
for parameter updating. 
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Figure 1. Comparison of flood forecast for 
different lead times. 
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1. INTRODUCTION 

The Australian Government Bureau of 
Meteorology has a national responsibility for the 
provision of flood forecasting and warning 
services to its citizens. In Australia, the application 
of more recent advances in hydrologic modelling 
and data assimilation techniques to real-time flood 
forecasting has only commenced relatively 
recently. Through involvement in the Cooperative 
Research Centre (CRC) for Catchment Hydrology, 
the Bureau has completed a research project in 
which a number of different models and updating 
techniques were compared using data from 14 
catchments (Srikanthan et al. 1997). Although 
individual models performed better on different 
catchments, a simple ranking procedure used to 
obtain an overall comparison showed that the 
Probability Distributed Moisture (PDM) model 
was one of the better performing model for a large 
number of catchments (Srikanthan et al. 1997). 
The uncertainty in the flood forecasting process 
was not considered in the above study. 

Nowadays there is a growing interest in knowing 
the uncertainty in flood forecasting and the 
resulting flood warnings. This is borne out of the 
fact that the processes involved in flood 
forecasting have inherent uncertainties in them. 
The procedure used in flood forecasting consists of 
a number of steps. The first step is rainfall 
measurement and forecasting rainfall during a 
flood event. The rainfall is then transformed into 
flow using a combined water balance and runoff-
routing model. There are uncertainties associated 
with rainfall measurement/forecasting, model and 
flow measurements. All these uncertainties 
contribute to the uncertainty in the resulting flood 
forecasts.  

The interest in quantifying uncertainty in real-time 
flood forecasting has led to a number of 
publications in the treatment of uncertainty caused 
by model parameters. Sequential data assimilation 
techniques provide a means of explicitly taking 
account of input, model and output uncertainties. 
One of the earliest data assimilation techniques is 
the Kalman filter developed for linear systems. For 
use with nonlinear models, it was later extended 
resulting in the extended Kalman filter (EKF).  
These two filters have been widely used in 
hydrologic modelling. If the nonlinearities in the 
model are strong, the linearization becomes very 
inaccurate. This has led to the development of the 
ensemble Kalman filter (EnKF) where the errors 
are allowed to evolve with the nonlinear model 
equations by performing an ensemble of model 
runs (Burgess et al., 1998).  

El Serafy and Mynett (2004) evaluated the 
feasibility of applying EnKF to real-time flood 
forecasting applications by comparing it with EKF 
for the Sobek River in Netherlands. The 
comparison showed that the EnKF gave similar 
results to those of the already operating EKF 
model with 10 or more ensemble members and 
they recommended the use of EnKF to other 
models such as Sobek Rural/Urban and Delft 3D. 
Weerts and El Serafy (2005) applied the EnKF and 
residual resampling (RR) to the HBV-96 rainfall 
runoff model with both synthetic and real data. 
The EnKF and RR algorithm performed 
comparably well. A number of assumptions were 
made on the model errors. The authors concluded 
that the effect of these assumptions should be 
investigated and quantified by systematic 
sensitivity analysis. Moradkhani et al. (2005) 
investigated the applicability and usefulness of 
dual state-parameter estimation of hydrologic 
models using ensemble Kalman filter and found 
that the one-day ahead forecast was consistent with 
the observations for the Leaf River. Weerts et al. 
(2006) compared sequential importance sampling 
(SIR), RR and EnKF with the HBV-96 rainfall 
runoff model for flood forecasting using synthetic 
and real data. The results from the real data 
showed that both the SIR and RR were more 
sensitive to the choice of model and measuremet 
errors. This made the EnKF more robust and 
outperformed the other two filters. In this study, 
EnKF and its several variations are used with the 
Probability Distributed Moisture model to forecast 
four flood events in Gudgenby River and 
evaluated. 

2. PROBABILITY DISTRIBUTED 
MOISTURE MODEL 

The Probability Distributed Moisture (PDM) 
model is a conceptual rainfall-runoff model which 
transforms rainfall and evaporation data to flow at 
the catchment outlet (Moore, 2007). Figure 2 
shows the general form of the model. The runoff 
production at a point in the catchment is controlled 
by the absorption capacity of the soil (treated 
together with canopy interception and surface 
detention) to take up water. This is conceptualised 
as a simple store with a given storage capacity. By 
considering that different points in a catchment 
have differing storage capacities and that spatial 
variation of capacity can be described by a 
probability distribution, it is possible to formulate 
a simple runoff production model which integrates 
the point runoffs to yield the catchment surface 
runoff into surface storage (S2). The recharge from 
the soil moisture store (S1) passes into subsurface 
storage (S3). The outflow from surface (qs) and 
subsurface (qb) storages forms the model output 
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(q). A complete description of PDM model is 
given in Moore (2007). 

 

  In the PDM model formulation, the surface 
runoff is calculated from the previous values of the 
surface runoff and net rainfall. In order to update 
the model states using ensemble Kalman filtering, 
the stores in the cascade of two linear reservoirs 
(S21 and S22) of the surface storage (S2) are 
expressed explicitly.      

3. ENSEMBLE KALMAN FILTER AND ITS 
VARIATIONS 

The Ensemble Kalman filter (EnKF) is a 
suboptimal estimator, where the error statistics are 
predicted by using Monte Carlo integration 
methods. The starting point is choosing an 
ensemble of state estimates that captures the initial 
probability distribution of state estimates. These 
sample points are then propagated through the 
nonlinear system and the probability density 
function of the actual state is approximated by the 
ensemble of the estimates. The approximation of 
forecast state error covariance matrix is made by 
propagating the ensemble of model states using the 
updated state from the previous time step. It is 
necessary to generate the ensemble of observations 
at each update time by introducing noise drawn 
from a distribution with zero mean and covariance 
equal to the observational error covariance matrix; 
otherwise the updated ensemble will have a very 
low covariance.  In this study, error variances of 
input rainfall and output discharge are specified a 
priori and not updated. The EnKF and its four 

variations that are used in this study are described 
below. 

 

3.1. EnKF with State Updating 

An ensemble of state vectors is propagated through 
the PDM model such that each state vector 
represents one realisation of generated model state. 
Then the state forecast is made for each ensemble 
member as follows:  
  
 

1
( , , ) ,

t

i i i i
t t tx f x u θ ω

+

− += +   1,... .i n=   (1) 

where 
1t

ix
+

−  is the ith ensemble forecasted state at 

time t+1, 
t

ix +  the ith updated ensemble state at 

time t, θ the model parameters and i
tu  the input to 

the model. In addition to representing the additive 
process noise ~ (0, )i s

t tNω ∑ , the EnKF represents 
the multiplicative model errors through forcing 
data perturbations. The input data perturbations are 
made by adding the 

t

iζ  noise with covariance u
t∑   

to the input data at each time step: 

t

i i
t tu u ζ= + , ~ (0, )

t

i u
tNζ ∑   (2) 

 
It was recognized that in order for the EnKF to 
maintain sufficient spread in the ensemble and 
prevent filter divergence, the observations should 
be treated as random variables by generating an 
observation ensemble with mean equal to the 
actual observation at each time and a predefined 
covariance (Burgers et al., 1998). Thus the 

 
                                Figure 2.  The PDM rainfall-runoff model (Moore, 2007) 
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forecasted states 
1t

ix
+

− are updated using Kalman 

gain 
1t

xK
+

as follows: 

11 1 1 1ˆ( )
t

i i x i i
t t t tx x K y y

+

+ −
+ + + += + −   (3) 

where 1ˆ i
ty +  is the ith predictive variable at time t+1 

given by: 
1 1ˆ ( , )i i

t ty h x θ−
+ += ,              (4) 

 
1

i
ty +  is the ith replicate of observation generated by 

adding the noise 1
i
tη +  with zero mean and 

covariance 1
y
t+∑  to the actual observation 1ty +  as 

follows: 
 1 1 1

i i
t t ty y η+ + += + ,  1 1~ (0, )i y

t tNη + +∑      (5) 
 
If the measurements are a nonlinear combination 
of state variables, the Kalman gain in adaptation to 
the ensemble based approach can be shown as 
(Moradkhani et al., 2005):  
 

1

1
1 1 1[ ]

t

x xy yy y
t t tK

+

− −
+ + += ∑ ∑ +∑     (6) 

where 1
yy
t+∑  is the forecast error covariance matrix 

of the prediction 1ˆ i
ty + , and 1

xy
t
−

+∑  is the forecast 
cross covariance of the state variables 

1t

ix
+

−  and 

prediction 1ˆ i
ty +  and 1

y
t+∑  is the covariance of the 

measurements. 

3.2. EnKF with Parameter Updating 

In this formulation, the parameters are considered 
as state variables, where the parameter evolution is 
represented by a random walk, given by  
 

1 t

i i i
t tθ θ τ− +
+ = + ,  ~ (0, )

t

i
tN θτ ∑   (7) 

 
Using the above parameter ensemble and forcing 
data replicates given in (4), a model state ensemble 
and predictions are made, respectively: 
 

1 1( , , )
t

i i i i
t t tx f x u θ

+

− + −
+=    (8) 

1 1 1ˆ ( , )i i i
t t ty h x θ− −
+ + +=    (9) 

 
Using  the Kalman filter, the updating of the 
parameter ensemble members is carried out: 

11 1 1 1ˆ( )
t

i i i i
t t t tK y yθθ θ

+

+ −
+ + + += + −             (10) 

where 
1t

Kθ
+

is the Kalman gain for correcting the 
parameter trajectories and is obtained by:  
 

1

1
1 1 1[ ]

t

y yy y
t t tKθ θ

+

− −
+ + += ∑ ∑ +∑     (11) 

where 1
y

t
θ −
+∑  is the cross covariance of parameter 

ensemble 1
i
tθ
−
+  and prediction ensemble 1ˆ i

ty + . Now 
using the updated parameter ensemble, the new 
model state trajectories are generated: 
 

1 1( , , )
t

i i i i
t t tx f x u θ

+

+ + +
+=               (12) 

3.3. Dual EnKF 

The dual EnKF requires two separate state-space 
representation for the state and parameters through 
two parallel filters. The parameters can be updated 
first and then the state variables or vice versa. 
These two variations (state-parameter and 
parameter-state) of updating in dual EnKF are used 
in this study. The procedure for state-parameter is 
as follows. The steps given in Eq (1) to (6) under 
state updating are applied initially to obtain state 
updates. Then using the updated state variables 
given in Eq (3), the new prediction trajectories are 
generated:  
 

1 1
ˆ̂ ( , )i i i

t t ty h x θ+ +
+ +=                (13) 

Using the Kalman filter, the parameter ensemble is 
updated: 
 

11 1 1
ˆ̂( )

t

i i i i
t t t tK y yθθ θ

+

+ +
+ + += + −              (14) 

where 
1t

Kθ
+

is the Kalman gain for correcting the 
parameter trajectories and is obtained by:  
 

1

1
1 1 1[ ]

t

y yy y
t t tK θ θ

+

−
+ + += ∑ ∑ +∑               (15) 

where 1
y

t
θ
+∑  is the cross covariance of parameter 

ensemble i
tθ
+  and prediction ensemble 1

ˆ̂ i
ty + .  

 
In dual EnKF with parameter-state updating, the 
steps given by Eq (7) to (11) under parameter 
updating (section 3.2) are applied first to obtain the 
parameter updates. Then using the updated 
parameters given by Eq (10), new model state 
forecasts (

1t

ix
+

− ) and discharge forecasts ( 1
ˆ̂ i

ty + ) are 
generated. 
 

1 1( , , )
t

i i i i
t t tx f x u θ

+

− + +
+=    (16) 

1 1 1
ˆ̂ ( , )i i i

t t ty h x θ− +
+ + +=     (17) 

 
The model states ensemble is updated by using 
 

11 1 1 1
ˆ̂( )

t

i i x i i
t t t tx x K y y

+

+ −
+ + + += + −   (18) 

The Kalman gain (
1t

xK
+

) for correcting the state 
trajectories and is obtained by 
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1

1
1 1 1[ ]

t

x xy yy y
t t tK

+

−
+ + += ∑ ∑ +∑     (19) 

where 1
xy
t+∑  is the covariance of state and 

prediction ensembles. 

3.4. Uncertainties in Input and Output  

The spread of the ensemble members is 
determined by the specified error in the model 
structure, the input forcing and discharge data. 
Realistic assumptions for errors in input forcing 
and response are essential for proper assimilation 
of data by filtering.  

3.4.1. Input forcing errors 
 For areal average rainfall derived in operational 
flood forecasting systems with a limited number of 
rain gauges, the uncertainties can be up to 50% 
(Willems, 2001). In this study, a preliminary 
estimate of input error term based on Weerts and 
El Serafy (2006) is used: 
 

true inputP P Pδ= +                (20) 

where 2~ (0, (0.15 0.2) )inputP N Pδ +   

3.4.2. Output measurement errors 
The uncertainty in the discharge measurement can 
be obtained from the rating curve calibration data 
for a given gauging station. However, in this study, 
a preliminary estimate of discharge measurement 
error is chosen similar to that of Georgakakos 
(1986) who assumed a standard deviation of 0.1 
times the measured discharge as given below.  
 

true measuredQ Q Qδ= +                           (21) 

 where  ( )2~ 0, (0.1 )measuredQ N Qδ   

4. APPLICATION TO GUDGENBY RIVER 

The PDM model was calibrated using daily and 
hourly data from Gudgenby River by the SCE 
algorithm. The PDM model was first run using 
daily rainfall data until the beginning of the flood 
event and then with hourly rainfall data. The 
calibrated parameters of the PDM model are given 
in Table 1. The root mean square error and the 
coefficient of efficiency of the calibration are 15 
m3/s and 0.87 respectively using all the data. 

Table 1. The parameters of the PDM model. 
Parameter Value Parameter Value 

Cmax 476 k1 1 
Cmin 0 k2 5.4 

b 1.42 kg 1000 
be 5.0 St 3.28 
bg 1.26 td 0 
kb 20   

 
The variance of noises introduced to the input 
forcing and flow measurements are proportional to  
their magnitudes as stated in (20) and (21). The 
EnKF and its four variations described in Section 3 
was then applied to the May 2003 flood event. For 
EnKF with state updating, the four stores in the 
PDM model (S1, S3, S21, S22) were considered as 
state variables and were updated sequentially as 
new measurements became available. The standard 
deviation of the four state variables was selected 
by sensitivity analysis and is summarized in Table 
2. To obtain the lead time and peak forecasts, a 
perfect knowledge of the future rainfall was 
assumed to avoid the error in forecasting rainfall. 
In reality, the uncertainty in the rainfall forecasts 
will add to the other uncertainties in the 
forecasting process. Forecasts were made at 1-, 3-, 
6-, 9- and 12-hour lead times at every forecast 
time. At each forecast time, the magnitude and 
time of the forecast peak were also obtained. 

Table 2. State variable standard deviations. 
State variable S1 S21 S22 S3 

Standard deviation 1.0 0.3 0.15 0.02 
 
For EnKF with parameter updating, three of the 
PDM model parameters, namely, Cmax, bg and k2 
were updated. These were the most sensitive 
parameters of the PDM model. The updating 
procedure was initialised by defining prior 
uncertainty range associated with these three 
parameters as given in Table 3. As the initial 
ensemble of parameters had to be specified, these 
three parameters were randomly sampled from a 
normal distribution with the standard deviations 
given in Table 3 which were obtained by 
sensitivity analysis. For dual EnKF, state-
parameter updating was considered where both 
state variables and parameters were sequentially 
updated.  

Table 3. Standard deviation and range of the PDM 
parameters updated. 

Parameter Minimum Maximum Std deviation 
Cmax 100 450 3.5 
bg 0.5 2.0 0.175 
k2 6.0 12.0 0.175 

 

5. MODEL EVALUATION 

The adequacy of the EnKF was evaluated by using 
the root mean square (RMSE) and the coefficient 
of efficiency for 1, 3, 6, 9 and 12 hour forecasts. 
The RMSE is defined as 
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{ }2
,

1
( ) ( )

n

f L obs
i

L

Q i Q i
RMSE

n
=

−
=

∑
 (18) 

where  Qf,L(i) forecasted discharge for lead 
time L for forecast iand  Qobs corresponding 
observed discharge. 
 
The coefficient of efficiency of a model is defined 
as the proportion of the variance of the observed 
discharge accounted by the model (Nash and 
Sutcliffe, 1970): 
 
 CoEL = 1 – S/Sobs   (19) 

where { }2
,

1
( ) ( )

n
f L obs

i
S Q i Q i

=
= −∑  

 { }2

1
( )

n
obs obs obs

i
S Q i Q

=
= −∑  

 
1

( )
n

obs obs
i

Q Q i
=

=∑  

 In addition, the error in the peak discharge 
magnitude and the timing were also used in the 
evaluation. To make objective comparison of the 
performance of EnKF with different options, a 
perfect knowledge of future observed rainfall is 
assumed in obtaining lead time forecasts and peak 
discharges. 

6. DISCUSSION 

For each EnKF method applied to Gudgenby 
River, the average values of the root mean square 
of error and coefficient of efficiency for the four 
events for lead times of 1, 3, 6, 9, 12 hours are 
given in Tables 4 and 5 respectively. These 
statistics were determined only for the period 
where the observed discharge is greater than 30 
m3/s to avoid the small discharge values 
influencing the statistics. In flood forecasting, 
small discharges are not important.  

It can be seen from Table 4 that the EnKF with 
parameter updating gave the smallest RMSE for all 
the lead time. Likewise, it gave the largest 
coefficient of efficiency for all the lead time. The 
quality of the forecasts deteriorated with lead time. 
As observed in an earlier study (Srikanthan et al. 
2007), the EnKF with parameter updating 
performs the best compared to the other three 
variations. 

The 1, 3 and 6-h lead time forecasts with 95% 
forecast limits are shown in Figure 1 while Figure 

2 shows the forecasts for lead times 9 and 12 hours 
for event 1. 

Table 4. Comparison of RMSE. 
Variations Lead time (h) 
of  EnKF 1 3 6 9 12 
State 11.27 14.33 18.24 20.80 22.19
Par 8.61 11.31 14.72 17.33 19.12
State-Par 9.72 12.76 16.61 19.03 20.44
Par-State 12.16 15.20 18.91 21.40 22.67

Table 5. Comparison of the Coefficient of 
efficiency. 

Variations Lead time (h) 
of  EnKF 1 3 6 9 12 
State 0.901 0.841 0.745 0.671 0.630
Par 0.940 0.898 0.831 0.770 0.723
State-Par 0.925 0.875 0.792 0.730 0.689
Par-State 0.889 0.826 0.730 0.656 0.617
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Figure 3. Comparison of flood forecast for 9- and 
12-hr lead times. 

The errors in the peak magnitude expressed as a 
ratio of the forecasted to observed peak for the 
four flood events were averaged and plotted as a 
function of time to peak in Figure 4. 
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Figure 4. Variation of forecast peak error with 
time to peak.  

This figure also shows the superior performance of 
parameter updating over the other variations. In 
terms of the timing error, there was not much 
difference between the different variations and 
error was very small (of the order of one hour or 
less). 

7. CONCLUSION 

The ability of the EnKF with the PDM model to 
forecast discharge was evaluated by using four 
flood events in the Gudgenby River. Four 
variations of the EnKF, namely, the state, 
parameter and dual (state-parameter and 
parameter-state) were considered. The uncertainty 
in the input rainfall data and the output discharge 
measurements were represented by Gaussian white 
noise with zero mean and variance obtained from 
the published literature. The uncertainty in the 
states and the parameters was obtained by 
sensitivity analysis. Perfect knowledge of observed 
rainfall was used during the forecasts. The 
parameter updating performed better than the other 
three. However, the application of EnKF gave 
good results only for short lead time forecasts with 
the results deteriorating markedly for long lead 
times. The inability to give good forecasts for long 
lead times even with perfect knowledge of 
observed rainfall needs further investigation. A 
weakness of the EnKF approach is the need to 
specify a priori uncertainty in states, rainfall and 
discharge. This makes the elucidation of the 
sensitivity of the forecast errors in peak flow and 
timing to a priori uncertainty a pressing issue. It 
follows that accurate specification of those sources 
of uncertainty deemed as sensitive is essential. 
Stream gauging data can be used to quantify the 
errors involved in using the rating curve for 
obtaining the discharges from the stage 
measurements. Rainfall data from a dense rainfall 
network can give reliable estimates of the error 
involved in the rainfall data. Further work is in 
progress to quantify these sources of uncertainty 

8. REFERENCES 

Burgers G., P.J. van Leeuwen, G. Evensen (1998) 
Analysis Scheme in the Ensemble Kalman 

    Filter. Monthly Weather Review 126, 1719-
1724. 

El Serafy G. Y. and A.E. Mynett (2004), 
Comparison of EKF and EnKF in Sobek River:  
Case study Maxau-Ijssel. In: Liong S-Y, Phoon 
K-K and Baovic V. (Eds.) Proc. 6th 
International Conference on HydroInformatics, 
World Scientific, pp. 513-520.  

Georgakakos, K.P. (1986) A generalized stochastic 
hydrometeorological model for flood and flash 
flood forecasting: 2. Case studies, Water 
Resources Research, 22(13), 2096-2106. 

Koster, T., G. El Sefary, A.W. Heemink, H.F.P. 
van den Boogaard and A.M. Mynett (2004)     
Input correction in rainfall-runoff models using 
Ensemble Kalman Filtering (EnKF). In:     Lee, 
J.H.W. & Lam K.M. (Eds.) Proc. 4th Int. Symp. 
On Environmental Hydraulics, Hong     Kong, 
15-18 December 2004, Leiden Proc, Balkema, p. 
1991-1996. 

Moore, R. J. (2007) The PDM rainfall-runoff 
model, Hydrology and Earth System Sciences, 
11(1), 483-499. 

Moradkhani, H.S., S. Sorooshian, H.V. Gupta and 
P. Houser (2005), Dual state-parameter     
estimation of hydrologic model using ensemble 
Kalman filter, Advances in Water Resources, 
28(2),    135-147. 

Srikanthan, R., P. Sooriyakumaran and J.F. Elliott 
(1997), Comparison of four real-time flood 
forecasting models.  24th Hydrology and Water 
Resources Symposium, Auckland, 185-190. 

Srikanthan, R., G.E. Amirthanathan and G. 
Kuczera (2007) Application of Ensemble 
Kalman Filter to Real-time Flood Forecasting. 
2nd International Conference of GIS/RS in Hydr 

ology, Water Resources and Environment 
(ICGRHWE’ 07), Guangzhou, China. 

Weerts A.H. and G El Serafy (2005) Particle 
filtering and ensemble Kalman filtering for input 
correction in rainfall runoff modelling. 
International conference on innovation advances 
and implementation of flood forecasting 
technology, Tromse, Norway. 

Weerts A.H. and G El Serafy (2006) Particle 
filtering and ensemble Kalman filtering for State     
updating with hydrological conceptual Rainfall 
Runoff Models, Water Resources Research, 42,     
W09403, doi,10.1029/2005WR004093, 2006. 

Willems, P. (2001) Stochastic description of the 
rainfall input errors in lumped hydrological. 
Stochastic Environmental Research and Risk 
Assessment 15, 132-152. 

1795




