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EXTENDED ABSTRACT 

The forecast quality from Numerical Weather 
Prediction (NWP) models and climate models 
depends on accurate initialisation.  Therefore 
variables such as latent (LE) and sensible (H) heat 
flux from the land surface, which provide the 
lower boundary condition for NWP, need to be as 
accurate as possible at the beginning of a forecast 
period.  Land Surface Models (LSMs) such as the 
CSIRO Biosphere Model (CBM) represent the 
exchange of energy and water between the earth’s 
surface and lower atmosphere and are used to 
calculate LE and H.  Soil moisture and 
temperature states of these models help partition 
incoming energy to the earth’s surface between 
LE and H.  Producing accurate predictions of LE 
and H is hindered by inaccuracies in LSMs such 
as uncertain initial model state conditions, errors 
in model forcing data, errors in model physics and 
a lack of data for accurately parameterising 
models. 

Data assimilation blends observations of a model 
variable(s) with a model to update/correct the 
model and achieve more accurate predictions than 
by running the model offline.  Assimilating soil 
moisture observations into LSMs is a proven 
technique for improving predictions of soil 
moisture and hence LE and H.  Although, 
assimilating soil moisture may not necessarily 
lead to optimal LE and H predictions due to a 
complex and non-linear relationship between 
them.  Assimilating LE and H observations has 
not been thoroughly explored in the scientific 
community and could potentially produce more 
accurate LE and H predictions.  This study 
compares the assimilation of soil moisture 
observations with that of combined LE and H 
observations into the CBM with the resulting 
impacts on predictions of LE, H and root zone 
soil moisture and temperature examined. 

Assimilation experiments were performed with a 1-
year series of data using the Ensemble Kalman 
Filter (EnKF) algorithm.  Observations and model 
forcing data were measured on a one-dimensional 
point scale at a site in south-eastern Australia.  
Errors were prescribed to initial conditions and to 
meteorological forcing variables.  Observations 
were assimilated on typical remote sensing 
timescales – every 3 days for soil moisture (SMOS 
satellite) and twice daily with minimal cloud cover 
for LE and H (MODIS).  Both observation sets 
were able to improve predicted soil moisture when 
assimilated compared to the offline model, with the 
soil moisture assimilation producing better results.  
Soil temperature predictions from both assimilation 
runs were worse than from the offline model 
indicating a warm bias.  LE and H predictions are 
improved overall by both assimilation runs with LE 
and H assimilation producing the best predictions.  
It is demonstrated here that while surface soil 
moisture assimilation can improve soil moisture 
predictions in a LSM and consequently improve LE 
and H predictions, assimilating LE and H 
observations can produce more accurate LE and H 
predictions.  Therefore the assimilation of LE and 
H observations into LSMs has the potential to 
provide NWP models with optimal LE and H 
estimates for initialisation. 
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1. INTRODUCTION 

Latent (LE) and sensible (H) heat flux predictions 
at the earth’s surface provide the lower boundary 
condition for Numerical Weather Prediction 
(NWP) and climate forecast models (Richter et al., 
2004), and hence are typically estimated by Land 
Surface Models (LSMs).  Generating accurate 
NWP and climate forecasts requires getting the 
most accurate LE and H predictions possible from 
LSMs at the beginning of a forecast period.  This 
can be achieved by adjusting the LSM soil 
moisture and temperature states to yield optimal 
heat flux estimates.  Techniques such as data 
assimilation, which blend observed data with 
models to improve their predictive performance, 
are therefore useful in these cases.  There are many 
examples in the scientific literature where data 
assimilation has been used to adjust LSM soil 
moisture states, on the basis that it will improve 
heat flux predictions for NWP.  In particular, these 
published examples discuss assimilation of soil 
moisture (e.g. Walker and Houser, 2001) or 
screen-level (2m above ground) relative humidity 
and/or air temperature observations (e.g. Bouttier 
et al., 1993).  However, assimilating observations 
of a variable such as soil moisture to correct LSM 
soil moisture states may not necessarily produce 
optimal heat flux predictions as the relationship 
between soil moisture and heat fluxes is non-linear 
and complex.  This complex relationship is further 
exacerbated by the lack of availability in detailed 
soil and vegetation data required to parameterise 
LSMs.  Achieving accurate and physically realistic 
soil moisture estimates should improve LE and H 
predictions but those predictions are not 
necessarily optimal. 

A synthetic study by Pipunic et al. (2007-in press) 
has demonstrated that in addition to soil moisture 
assimilation, alternative approaches such as LE 
and/or H, and skin temperature assimilation also 
have strong impacts on improving LSM heat flux 
predictions.  Moreover, it was shown that soil 
moisture and temperature predictions were also 
positively impacted by the assimilation.  
Therefore, this study extends that work to confirm 
the results when using real rather than synthetic 
data.  Here, LE and H observations from a 3D 
eddy covariance system and soil moisture 
measurements are separately assimilated into the 
CSIRO Biosphere Model (CBM) (Wang et al., 
2001) using an ensemble Kalman filter (EnKF) 
algorithm (Evensen, 1994), and the soil moisture, 
temperature and heat flux predictions compared 
with observed values.  The aim is to make more 
definitive conclusions regarding which data type 
will likely lead to better LE and H predictions 
when assimilated into a LSM such as CBM. 

2. STUDY SITE AND DATA 

The modelling and assimilation in this paper uses 
data from a study site in south-eastern Australia, 
located within the Kyeamba Creek catchment.  The 
site is approximately 30km south-east of the 
township of Wagga Wagga, New South Wales, 
situated on flat non-irrigated grass pasture land 
along the flats of Kyeamba Creek, a tributary of 
the Murrumbidgee River.  Instrumentation at this 
site has been set-up and maintained by the 
University of Melbourne and includes a 3D eddy 
covariance system together with standard 
meteorological, soil heat flux (G), moisture and 
temperature profile measurements.  Meteorological 
variables that were measured and used for forcing 
the CBM include incoming short and long wave 
radiation (outgoing short and long wave were also 
measured and used in determining net radiation, 
RN, for quality control of eddy covariance data), 
precipitation, air temperature, wind speed, specific 
humidity and atmospheric pressure.  Any gaps in 
the meteorological record were filled with data 
from the Wagga Wagga automatic weather station 
operated by the Bureau of Meteorology. 

Eddy covariance measurements were made at 
10Hz and all other measurements at 0.5Hz with the 
exception of soil moisture (once every 0.00056Hz 
and atmospheric pressure (once per hour).  All 
measurements were aggregated to 30 minute time 
steps for the experiment period January 1st to 
December 31st, 2005.  The 3D eddy covariance 
system was elevated 3 metres above the ground 
giving an approximate fetch of 300 metres around 
the instrumentation.  Data were quality controlled 
by i) filtering spurious values, ii) checking closure 
of the energy budget (scatter plot of HLE +  
against GRN −  revealed approximately 80% 
closure), and iii) closing the energy budget using 
the method of Twine et al. (2000), whereby the 
Bowen-ratio ( LEH / ) is maintained constant 
while LE and H are adjusted. 

Key soil properties for parameterising the CBM in 
this study were sampled at the measurement site 
location using a map of soil data from the region 
(McKenzie pers. comms., 2005).  They include 
wilting point, field capacity, hydraulic 
conductivity at saturation and bulk density.  The 
values used in this study are assumed to represent 
the best possible parameters that would be 
available for use in the model.  In contrast, most 
operational NWP models such as that used by 
Australian Bureau of Meteorology have globally 
uniform soil properties and Leaf Area Index (LAI) 
values (for vegetated areas) for parameterising the 
land surface (Richter et al., 2004).  Vegetation 
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properties were assigned using estimates as in 
Sellers et al. (1996) for agricultural and C3-
grassland, as supplied with the CBM.  Parameter 
values that are observable in the field such as 
canopy height and fraction of roots in each of the 
model’s soil layers were estimated at the site.  LAI 
values were taken from monthly averaged LAI 
maps for Australia by Lu et al. (2001). 

3. MODELS 

3.1. CSIRO Biosphere Model (CBM) 

The CBM as used in this study (the latest release 
version is called CABLE) was developed by 
scientists at the Marine and Atmospheric Research 
Division of the Commonwealth Scientific and 
Industry Research Organisation (CSIRO) in 
Aspendale, Victoria, Australia.  A detailed 
description of the model and its formulations 
(written for the CABLE version) is given in 
Kowalczyk et al. (2006).  It is a single column 
model dealing with the vertical exchange of water, 
energy and CO2 between the soil, vegetation 
canopy and the atmosphere. 

The soil scheme consists of six computational soil 
layers with thicknesses of 2.2, 5.8, 15.4, 40.9, 
108.5 and 287.2 cm from top to bottom, all with 
uniform properties.  There are three prognostic 
variables for each layer – soil moisture, soil 
temperature and ice content.  Movement of water 
through the soil is governed by Richard’s equation 
and calculation of heat conduction is used for 
determining soil temperature.  Soil evaporation is 
modelled with a bulk aerodynamic formulation 
after Mahfouf and Noilhan (1991).  Vegetation is 
represented by a two-leaf canopy model (Wang 
and Leuning, 1998) consisting of a big ‘sunlit’ and 
big ‘shaded’ leaf.  Formulations are included for 
radiative coupling between the vegetation and 
ground, canopy turbulence, along with calculations 
of photosynthesis, stomatal conductance, leaf 
temperature, and energy and CO2 fluxes.  Total LE 
and H output from the model are the respective 
sums of LE and H from the soil surface and 
canopy. 

3.2. Ensemble Kalman Filter (EnKF) 

The EnKF is one type of direct observer 
assimilation methods.  It can be summarised as 
follows: 
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such that the state vector X forecast by the model 
(superscript f) at time k is updated (analysed; 

superscript a) by the difference between an 
observed and model predicted observation Z (the 
innovation) multiplied by a weight factor K.  The 
weight factor, or Kalman Gain, is given by: 
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P represents the error covariance of the forecast 
model states and R is the error covariance of the 
observation.  The matrix H is a nonlinear operator 
relating the state vector X to the observation Z 
(superscript T denotes the matrix transpose).  If P 
is larger than R (i.e. observations more certain than 
model prediction), then K will approximate to 1 
when X and Z are the same scalar quantity (i.e. H 
= 1), and the innovation will be relied upon 
heavily to adjust the forecast states due to the 
small relative observation error.  In contrast, where 
R is large compared to P, K will approach 0 and 
the observation will not be trusted sufficiently 
leaving the final analysis vector a

kX  relatively 
unchanged, since the model’s forecast is 
understood to be more reliable in this case. 

A good summary of the EnKF as implemented in 
this study can be found in Walker and Houser 
(2005).  The error covariance of the model, P, at 
assimilation times is estimated from a series of 
parallel model runs (ensemble members) each run 
with randomly added errors and P is calculated 
from the ensemble spread.  The mean of the 
ensemble is therefore taken to be the estimate of 
the true state.  At assimilation time steps, 
observations are perturbed within the observation 
uncertainty range and then an ensemble of 
observations is generated around the perturbed 
value within the uncertainty range, the spread of 
which is the observation error covariance, R.  The 
model state matrix X is then updated via equations 
(1) and (2). 

4. METHODOLOGY 

This work compares observed LE, H and root zone 
soil moisture and temperature from the study site 
for all of 2005 with outputs from the CBM 
resulting from i) a model simulation without 
assimilation (denoted as “open-loop”), ii) a model 
simulation where LE and H observations are 
assimilated (denoted as “LEH_Assim”) and iii) a 
model simulation where surface soil moisture 
observations are assimilated (denoted as 
“SM_Assim”).  Initial conditions used in the 
model simulations were estimated by spinning up 
the model through repeated simulation using 
meteorological forcing data for the 1-year 
experiment period until the soil moisture and 
temperature states reached equilibrium at the 
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start/end of the year, which took 7 years of 
simulation.  The measured forcing data and spun 
up initial conditions were used to produce the 
open-loop simulation.  To implement the EnKF, 
ensembles of initial conditions and forcing 
variables were generated to represent modelling 
errors introduced by each – 20 ensemble members 
were found to be adequate.  Inaccurate model 
physics and uncertain parameters also account for 
model error, but have not been specifically treated 
in this study.  State updates were made to the soil 
moisture and temperature states for all six CBM 
soil layers in both assimilation experiments. 

4.1. Initial condition ensembles 

Generating initial condition ensembles involved 
adding random perturbations to the spun-up initial 
soil moisture and temperature values (taken to be 
the ensemble means) for each model soil layer.  
The perturbations were randomly generated 
variates with zero mean and a standard deviation 
chosen so the spread of ensemble members 
represents the uncertainty of the estimated initial 
conditions.  Observed soil moisture and 
temperature at the initial time step were used to 
approximate the uncertainties of the estimated 
initial conditions.  Since no observations were 
available to guide ensemble initial spread for the 
deeper model layers, the range of random values 
generated was made larger than for the other layers 
to reflect greater uncertainty.  Table 1 summarises 
the spun-up initial conditions (ensemble mean) for 
each model soil layer and the range of ensemble 
spread (standard deviation) determined with the 
aid of observations. 

Table 1. Summary of initial condition ensembles 
for soil moisture and temperature states. 

 Moisture 
(vol/vol) 

Temperature 
(˚C) 

Model Soil 
Layer 

Mean St. 
Dev. 

Mean St. 
Dev. 

1 0.095 0.10 22.0 15.0 

2 0.07 0.15 32.5 15.0 

3 0.47 0.37 27.2 15.0 

4 0.47 0.37 24.9 15.0 

5 0.47 0.40 22.2 25.0 

6 0.45 0.40 18.4 25.0 

4.2. Forcing ensembles 

The same principle used to create initial condition 
ensembles was applied to generate meteorological 
forcing data ensembles – random perturbations 
with zero mean and a maximum range ensuring the 
ensemble spread represents the data uncertainty 
were added to each variable.  However, the level 
of detail in prescribing error to each 
meteorological forcing variable was more complex 
and the approach outlined in Turner et al. (2007-in 
press) was applied in this study.  For every 
variable, two types of error were prescribed to 
create the ensemble member, with i) separate 
random perturbations generated at each 30 minute 
model time step in the experiment period and 
added to the data value (measurement error), and 
ii) a single random perturbation generated once 
and applied at each time step in the period 
(calibration / representation error). 

Prescribing error to forcing data also depends on 
the data type of each variable as categorised by 
Turner et al. (2007-in press), which defines 
variables as either unrestricted, semi-restricted or 
restricted.  Unrestricted variables are measured on 
a scale with no maximum or minimum bounds and 
errors are considered independent at any point on 
the measurement scale and added directly to each 
data value.  Semi-restricted data have a lower or 
upper bounding limit and errors are usually 
proportional to measurements and are added as a 
percentage of measured values, so if a particular 
variable has a minimum bound of zero then there 
will be no error if a value of zero is recorded (such 
as with precipitation).  Restricted data are 
measured on a scale with an upper and lower 
bound.  Added errors can either be independent of 
measurements and truncated at the boundaries of 
the measurement scale.  Alternatively they can be 
generated via a variable approach where error is a 
function of the measurement and the maximum 
error is added at the mid point of the measurement 
domain and reduces linearly to zero at the domain 
boundaries.  An example of a restricted data type is 
cloud cover fraction in the sky where at the end 
points of the measurement domain, the sky is 
either completely clear or completely covered 
(low/no uncertainty) and more uncertain in the 
middle. 

The range of ensemble spread prescribed to each 
forcing variable in this study was chosen to 
represent physical reality, whereby it represents 
the error from using data from a single site to 
represent a region for instance.  Table 2 
summarises the forcing variables by their data type 
category from Turner et al. (2007-in press) with 
the approximate maximum uncertainty range 
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(standard deviation) prescribed for generating 
ensembles. 

Table 2. Summary of meteorological forcing 
variable ensembles. 

Forcing Variable Category Std. Dev. 

Shortwave in Semi-
restricted 

35% 

Longwave in Semi-
restricted 

32% 

Precipitation Semi-
restricted 

40% 

Air Temperature Unrestricted 3˚C 

Wind Speed Semi-
restricted 

120% 

Specific Humidity Restricted 0.003g/kg 

Pressure Semi-
restricted 

2.5% 

4.3. Data Assimilation 

NWP and climate models produce spatially 
distributed forecasts and therefore any operational 
data assimilation scheme would be best served by 
spatially distributed observations such as remotely 
sensed data.  Although this study is for a single 
one dimensional soil column, the assimilation 
experiments were performed using the temporal 
scales of relevance to remotely sensed 
observations. 

For assimilation, LE and H eddy covariance 
measurements were sampled from the 
observational record on a twice daily interval 
(10:00am and 14:00pm), which approximately 
corresponds to a MODIS satellite timescale for 
thermal infra-red (TIR) measurements from which 
LE and H estimates are derived.  Since clouds can 
obscure remotely sensed TIR observations, further 
sub-sampling of the twice daily observations was 
performed using cloud cover data from Wagga 
Wagga weather station.  Observations were 
discarded for cloud cover of more than 3 oktas; 3 
oktas was chosen as a significant proportion of an 
entire image would be useful for assimilation 
provided the pixels under clear sky are relatively 
contiguous.  Moreover, observational data gaps are 
introduced as a result of data quality control 
procedures and instrument mal-function.  
Volumetric soil moisture data measured over the 
0-8cm layer were sampled at midday once every 3 
days.  This approximates both the sampling depth 
and expected temporal scale of soil moisture 
observations from the Soil Moisture and Ocean 
Salinity (SMOS) satellite which is soon to be 

launched (Kerr et al., 2001).  As a result of the data 
sampling, a total of 219 LE and H observations 
and 112 soil moisture observations were used in 
the assimilation experiments. 

Uncertainty in the LE and H measurements was 
estimated from energy budget closure calculation 
averaged over the entire experiment period, which 
was about 30Wm-2.  Moreover, the soil moisture 
observation uncertainty determined from 
calibration of field data was ± 4%vol/vol which 
corresponds to the expected accuracy from SMOS.  
Soil moisture observations were assimilated into a 
depth averaged combination of the top two soil 
layers of the CBM (2.2 and 5.8cm thick 
respectively) which have a combined depth that is 
equivalent to the observation depth. 

5. RESULTS AND DISCUSSION 

To examine the impact of the assimilation 
experiments, model predictions of LE, H, root 
zone soil moisture and root zone soil temperature 
are compared with field observations.  Root zone 
values refer to an average (weighted by soil layer 
thicknesses) of values across the top 3 model soil 
layers which contain plant roots.  Figure 1 is a 
comparison of root zone soil moisture.  
LEH_Assim and SM_Assim can each improve the 
model predicted moisture in the root zone when 
compared with the open-loop simulation, with 
SM_Assim yielding more accurate results as 
expected.  However, LEH_Assim improvement in 
soil moisture mainly in the first half of the year is 
encouraging and shows that this observational data 
stream does contains soil moisture information. 

Figure 2 shows an overall poorer performance in 
root zone soil temperature in both assimilation 
cases compared to the open-loop simulation, 
except for a brief period (~days 100-150) where 
LEH_Assim closely matches the observed 
temperature (as does the open-loop simulation).  
Comparing the two assimilation runs, LEH_Assim 
has produced a better estimate of soil temperature 
in cooler/wetter periods, with SM_Assim generally 
performing better at warmer drier extremes. 

There is a significant improvement in LE and H 
for the first half of the year (Figures 3 and 4) for 
both assimilation experiments, with LEH_Assim 
generally performing better especially for LE 
predictions.  Throughout the middle part of the 
year, the open-loop simulation matches the 
observations reasonably well for both LE and H 
and the assimilation runs have minimal impact, 
although SM_Assim slightly overestimates H in 
parts of this period.  In the latter part of the year 
from approximately day 280 onwards, predictions 
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of H (Figure 4) from all model simulations match 
the observations fairly well overall.  For LE 
predictions (Figure 3), LEH_Assim is clearly 
better in matching observations from 
approximately day 310 onwards, with SM_Assim 
having almost no impact compared to the open-
loop simulation. 

Poorer soil moisture prediction from LEH_Assim 
in the latter half of the year coincides with good 
predictions of LE and H from LEH_Assim.  
Conversely, good predictions of soil moisture from 
SM_Assim coincide with poor LE estimates from 
approximately day 310 onwards. 
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Figure 1. Root zone soil moisture observations 
and outputs from all model simulations. 
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Figure 2. Daily averaged daytime (6am to 6pm) 
root zone soil temperature observations and 

outputs from all model simulations. 
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Figure 3. Daily averaged daytime (6am to 6pm) 
LE observations and outputs from all model 

simulations. 
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Figure 4. Daily averaged daytime (6am to 6pm) H 
observations and outputs from all model 

simulations. 

Root mean square errors (RMSE) were calculated 
over the experiment period between model 
simulation outputs and the observations (Figure 5).  
They confirm improvements in all model outputs 
except for soil temperature from both assimilation 
runs.  Also evident is the more accurate LE and H 
predictions from LEH_Assim compared to 
SM_Assim, and vice versa for soil moisture 
predictions. 
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Figure 5. RMSE between model simulations and 
observations for daytime hours (6am to 6pm) over 

the 1-year experiment period. 

6. CONCLUSIONS 

The experiments performed here confirm: (i) 
SM_Assim has produced better soil moisture 
estimates than for LEH_Assim, with both 
producing better overall soil moisture predictions 
than the open-loop simulation; (ii) Both 
assimilation runs resulted in soil temperature warm 
biases, with LEH_Assim producing slightly better 
temperature predictions in the cooler/wetter period 
and SM_Assim better predictions in warmer/drier 
periods; and (iii) LEH_Assim produces better LE 
and H predictions than SM_Assim, with both 
performing better than the open-loop simulation..  
Hence, improved soil moisture estimates do not 
necessarily translate to optimal LE and H estimates 
in LSMs and LEH_Assim has the potential to 
produce improved LE and H estimates for NWP. 
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