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EXTENDED ABSTRACT 

Soil moisture is an important hydrological variable 
in rainfall-runoff modelling: it significantly 
influences the partitioning of precipitation between 
infiltration and runoff and therefore the streamflow 
of a catchment. Previous studies have shown that 
the assimilation of in situ soil moisture 
measurements can improve the streamflow 
prediction (Aubert et al. 2003). However, soil 
moisture obtained from in situ measurement is not 
feasible everywhere due to the limitation of time 
and investment. Satellites offer an alternative since 
they can observe large areas over extended periods 
of time. Among remote sensing technologies, 
passive microwave observation has its own 
advantages in monitoring soil water content. In 
this paper, we compared TRMM-TMI passive 
microwave soil moisture (PMSM) observations 
and soil moisture generated by a conceptual 
rainfall-runoff model (HBV96), to evaluate the 
relationship between these two soil moisture 
signals and whether PMSM observations can be 
used to constrain a conceptual rainfall-runoff 
model. 

The Tarcutta catchment, located within the Murray 
Darling Basin in eastern Australia, is the study 
area in this paper. TRMM-TMI PMSM was 
retrieved using the Land Parameter Retrieval 
Model and X-band (10.7 GHz) brightness 
temperature, roughly representing soil moisture of 
the top 1-cm.  HBV96 model covers most of the 
important runoff generating processes by quite 
simple and robust structures, and does not require 
too much input data. The HBV96 was 
implemented in the freely available Geographical 
Information System—PCRaster, which enables the 
model to run on a series of discrete spatial units. 

The Nash-Sutcliffe model efficiency reached 0.64 
for the calibration period (1 Jan 1998 through 31 

Dec 2003) and 0.67 for the validation period (1 Jan 
1981 through 31 Dec 1997). The TRMM-TMI 
PMSM and soil moisture from HBV96 had a 
similar seasonal pattern. The peaks of rainfall 
events coincide with the peaks of TRMM-TMI 
PMSM, but the soil moisture from HBV96 peaks 
around 58 days later. TRMM-TMI PMSM 
represents the very top soil (1-cm). At the start of 
the wet season, the top soil can be expected to wet 
up before moisture moves down into deeper soil 
layers, and this would explain the lag time of 
around 58 days.   

It is also observed that PMSM was already 
decreasing when the value in HBV96 soil moisture 
“bucket” and baseflow were still increasing. This 
can not be explained within the scope of this 
investigation. Future analysis using multi-layer 
soil water balance models may shed more light on 
this. However, the influence of lateral 
heterogeneity should also be considered.  
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1. INTRODUCTION 

Soil moisture plays a critical role in many 
hydrological processes. Accurate measurements of 
soil moisture can help to predict runoff, 
infiltration, evaporation and other important 
variables. (Cashion et al. 2005).  

Soil moisture data can be obtained in several ways: 
in situ, through remotely sensed observations, and 
through modelling. Aubert et al. (2003) 
assimilated in situ measurements of soil moisture 
into the rainfall-runoff model. It was found that the 
assimilation of soil moisture data is particularly 
effective during flood events while assimilation of 
streamflow data is more effective for low flows. 
Combined assimilation is more adequate for the 
entire forecasting period.  However, in situ 
measurements of soil moisture are often time 
consuming and require a large investment to 
sufficiently sample even small catchments (Rawls 
et al. 1982). 

Satellites offer an alternative since they can 
observe large areas over an extended period of 
time (Jackson 1993). Compared with other remote 
sensing technologies, passive microwave 
observations have certain advantages in that: (1) 
they are available regardless of cloud cover; (2) 
there is a physical relationship relating emissions 
to water amounts in the environment; and (3) 
rather than the land surface only, they provide 
information on water content of the top soil layer 
(albeit still only a few cm deep, depending on 
wavelength).  

The major objective of this paper is to compare 
TRMM-TMI passive microwave soil moisture 
(PMSM) observations and soil moisture generated 
by a conceptual rainfall-runoff model (HBV96), to 
evaluate the relationship between the two soil 
moisture signals and whether PMSM observations 
can be used to force a conceptual rainfall-runoff 
model. 

2. DATA AND METHODS 

2.1. Study area 

The Tarcutta catchment, the study area of this 
paper, is located in southern New South Wales, 
and is a tributary of the Murrumbidgee River and 
located within the Murray Darling Basin (MDB) in 
eastern Australia (Figure 1). The catchment covers 
1640 km2, has average annual rainfall of 810 mm, 
of which 98 mm becomes stream flow. A land use 
map of the Tarcutta catchment was extracted from 
the MODIS Land Cover Classification products 
(http://modis-land.gsfc.nasa.gov/landcover.htm). 

The Tarcutta catchment has three major land cover 
types, cropland covering 60%, grassland 26%, and 
forest 13%. 

   
Figure 1. Tarcutta catchment, Australia 

2.2. TRMM-TMI Soil Moisture 

The Microwave Instrument (TMI) on board 
NASA’s Tropical Rainfall Measuring Mission 
(TRMM) has provided operational passive 
microwave measurements at 10.7 GHz (X-band) 
and eight higher frequencies including the 37 GHz 
(Ka) band since December 1997 (Kummerow et al. 
1998). The observations can be ingested into a 
microwave radiation transfer model to infer soil 
moisture, as well as a set of atmospheric, soil and 
vegetation variables, including soil and canopy 
temperature and vegetation optical depth. 

We used the top soil moisture content (m3 m-3) 
retrieved using the Land Parameter Retrieval 
Model (LPRM) (Owe et al., 2001; De Jeu and 
Owe, 2003; Meesters et al., 2005) and X-band 
brightness temperature. The retrieved soil moisture 
roughly represents the top 1-cm at X-band and was 
re-sampled to the resolution of 25 km prior to this 
analysis. It has been evaluated against various 
observational and simulated datasets, generally 
with good results and with an absolute accuracy of 
ca. 0.06 m3 m-3 (Owe et al., 2001; de Jeu and Owe, 
2003; O’Neill et al., 2006; Wagner et al., 2007).  

2.3. HBV96 Model 

The HBV-model is named after the abbreviation of 
Hydrologiska Byråns Vattenbalansavdelning 
(Hydrological Bureau Waterbalance-section), a 
former section at the Swedish Meteorological and 
Hydrological Institute, where the model was 
originally developed. The original purpose of this 
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model was for runoff simulation and hydrological 
forecasting, but the scope of applications has 
increased steadily (Bergström 1995). The HBV96 
is the modified version following the basic 
modelling philosophy as the original HBV model, 
leading to significant improvements in model 
performance (Lindström et al. 1997).  

 The advantages of the HBV96 model are that (a) it 
covers most of the important runoff generating 
processes by quite simple and robust structures and 
does not require too extensive input data, (b) it 
accounts for topographic conditions by defining 
elevation zones within a basin or sub-basins, and 
(c) the model was successfully tested in different 
conditions in more than 40 countries (Krysanova et 
al. 1999).  

The HBV96 consists of three major routines: (a) 
snow accumulation and melt, (b) soil moisture 
accounting, and (c) runoff response and river 
routing. Its structure is presented schematically in 
Figure 2. The Tarcutta catchment has no snow 
accumulation and melt, so parameters related to 
snow components are not considered in this paper. 

 

 

Figure 2. Schematic structure of one subbasin in 
the HBV-96 model (Lindström et al., 1997) 

2.4. Modelling Environment 

The HBV96 model was implemented in the freely 
available modelling environment—PCRaster, 
which consists of a set of computer tools for 

storing, manipulating, analysing and retrieving 
geographical information. The central concept of 
PCRaster is a discretization of the landscape in 
space, resulting in cells of information. Each cell 
can be regarded as a set of attributes defining its 
properties. It receives and transmits information to 
and from neighbouring cells. The lateral directions 
in a landscape are represented by a set of 
neighbouring cells composing a map; relations in 
vertical directions, for example between soil layer 
and groundwater zone, are implemented using 
several attributes stored in each cell. Operations 
used in modelling can be regarded as functions that 
induce a change in the properties of the cells on the 
basis of the relations within cells and between 
cells. In our analysis, the grid size of each cell is 
100 ×100 m.   

The discharge simulated from HBV96 was 
compared with the streamflow measured by the 
gauge station at the outlet of the Tarcutta 
catchment (station 410047). The calibration period 
was 1 Jan 1998 through 31 Dec 2003 and the 
validation period 1 Jan 1981 through 31 Dec 1997. 
We compared PMSM and HBV96 modeled soil 
moisture for the 1 Jan 1998 through 31 Dec 2003. 

3. RESULTS 

Because the PCRaster software did not provide for 
a parameter optimization function, parameters 
were fitted visually. Fitted values for the most 
important parameters are listed in Table 1. 

The efficiency criteria used in this paper to 
evaluate the model behavior is Nash-Sutcliffe 
model efficiency (NSME) (Nash and Sutcliffe 
1970). 
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The NSME obtained for the calibration period was 
0.64 (Figure 3). This resulted in a NSME of 0.67 
for the validation period (Figure 4). It is noted that 
the peak flow was not very well reproduced ( 
Figure 3), but this was considered of secondary 
importance considering the aim of this 
investigation was to compare soil moisture. 

The comparison between average soil moisture for 
the Tarcutta catchment derived from TRMM-TMI 
and soil moisture from HBV96 is shown in Figure 
5. The soil moisture from TRMM-TMI peaks 
around the same time as the rainfall events and 
shows one seasonal pattern. For the purpose of 
better comparison, the time series of rainfall and 
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soil moisture from TRMM-TMI are smoothed 
(Figure 6).  The soil moisture time series show a 
similar seasonal pattern, although HBV96 lags 
TRMM-TMI. The greatest correlation coefficient 
(0.67) is obtained with a lag time of 58 days 
(Figure 7) and the root mean square error (RMSE) 
of 0.047.  

Table 1. Relevant parameters in HBV96 model 
derived from modelling calibration 

 

 

Figure 3.  Observed and simulated runoff for the 
calibration period (1998 through 2003) 

 

Figure 4. Observed and simulated runoff for the 
validation period (1981 through 1997) 
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Figure 5. Comparison of soil moisture from 

TRMM-TMI and HBV96 
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Figure 6. Comparison of soil moisture from 

smoothed TRMM-TMI and HBV96. The original 
rainfall and TRMM-TMI were smoothed by taking 
the average of 40 neighbouring data points in time 

Soil moisture routine 
FC 
 

430mm  (forest) 
150mm  (grass 
and crops) 

the maximum soil 
moisture storage (mm) 

BETA 
 

6 parameter that 
determines the relative 
contribution to runoff 
from precipitation 

LP 
 
 

0.8 fraction of FC above 
which actual  
evaporation equals 
potential evaporation 

Runoff response routine 
KBaseFlow 0.005 

 
recession coefficient of 
base flow (day-1) 

KQuickFlow 
 

0.05 recession coefficient of 
quick flow (day-1) 

PERC 
 

0.75 maximum percolation 
from upper to lower 
zone (mm.day-1) 

ALPHA 
 

1.2 measure of non-
linearity of upper zone 

MAXBAS 
 

1 number of days in unit 
hydrograph 
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Figure 7. Coefficient of lagged correlation 
between HBV96 soil moisture and TRMM-TMI 

soil moisture for different lag times. 

4. DISCUSSION 

To some extent the lag between PMSM and 
HBV96 might be expected on conceptual 
considerations. TRMM-TMI with the low 
observing frequency of 10.7 GHz (X-band) has a 
source depth of about 1 cm, and so represents the 
very top soil only. At the start of the wet season, 
the top soil can be expected to wet up before 
moisture moves down into deeper soil layers, 
while in the dry season, the top soil is expected to 
dry out first. In other words, the top soil responds 
immediately with rainfall. Soil moisture simulated 
by the HBV96 model is the average value of the 
soil moisture “bucket” of unknown depth. The 
entire profile is assumed to wet/dry at a constant 
amount, rather than the surface wetting faster and 
subsequently drying faster. This could partly 
explain the lag time of two months.  

The lag time of two months was also found by 
Kwantes (2007) who performed a base flow 
separation on the daily flow data for the Tarcutta 
catchment and compared the stream flow and base 
flow patterns to the PMSM data. It was 
demonstrated that the rainfall-runoff response 
(determining how much rainfall becomes stream 
flow) peaks around the same time as base flow, but 
that the seasonal PMSM pattern peaked some two 
months earlier, in line with the results presented 
here. The fact that soil moisture peaks before 
rainfall-runoff response is not conceptually 
consistent if it is assumed that rainfall-runoff 
response is primarily a function of top soil 
wetness. However, it would be consistent if 
rainfall-runoff response is a function of the 
fractional area of (near-) saturated soil, which 
would be expected to increase with groundwater 
level. The strong correlation between base flow (a 
proxy for groundwater level) and rainfall-runoff 
response provides some indirect support for this 
notion. 

The results of this study can also be compared with 
those reported in a very similarly designed study 
by Alvarado (2006) in a tributary catchment of the 
Rhine basin in Germany. In Alvarado’s study a 
seasonal pattern in PMSM was found. This pattern 
was reproduced by HBV96, somewhat 
unexpectedly, as this model does not represent top 
soil explicitly.  

However, the observation that PMSM is already 
decreasing when the modeled soil moisture is still 
increasing (Figure 6) can not be explained within 
the scope of this analysis. Alvarado (2006) 
compared the PMSM with the soil moisture of 
shallow depth simulated by a multi-soil-layered 
model named Representative Elementary 
Watershed (REW) model. The soil moisture from 
the top soil layer did not show the seasonal pattern 
which was reflected from PMSM and reproduced 
by HBV96 model; instead it moved between wet 
and dry conditions depending on rainfall 
conditions.  To some extent, this indicates that the 
multi-soil-layered model assuming the top soil 
layer is homogeneous would not help explain the 
mismatch observed in this analysis.   

Further more detailed analysis using other layered 
soil water balance models may help elucidate the 
cause of this mismatch. However, it must be kept 
in mind that the real world is a 3-dimensional and 
very heterogeneous.     

5. CONCLUSION 

This investigation in Tarcutta catchment shows 
that PMSM peaks around the same time as rainfall 
events, but soil moisture from HBV96 peaks about 
two months later. PMSM represents the soil 
moisture of the shallow depth (about 1-cm) while 
the soil moisture modeled from HBV96 represents 
the soil moisture “bucket” of unknown depth. The 
top soil is expected to immediately react upon 
rainfall events and it takes longer for soil moisture 
“bucket” to respond, which could explain the lag 
time of two months.  

The lag time of two months was also found in 
previous studies which revealed that streamflow 
and baseflow peak simultaneously, but also two 
months later than PMSM. This indicates the soil 
moisture modeled from HBV96, streamflow and 
baseflow are highly correlated. Also, the rainfall-
runoff response is a function of the fractional area 
of (near-) saturated soil rather than the top soil 
wetness. 

The observation that PMSM decreases while 
modeled soil moisture and base low are still 
increasing can not be explained within the scope of 
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this investigation. Possibly, future multi-layer soil 
water balance modeling will shed more light on 
this. However, the influence of lateral 
heterogeneity should also be considered. 
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