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EXTENDED ABSTRACT 

Improved accuracy in defining initial conditions 
for fully-coupled Numerical Weather Prediction 
models (NWPs) along with continuous internal 
bias corrections for baseline data generated by 
uncoupled Land Surface Models (LSMs) is 
expected to lead to improved short-term to long-
range weather forecasting capability. Because land 
surface parameters are highly integrated states, 
errors in land surface forcing, model physics and 
parameterization tend to accumulate in the land 
surface stores of these models, such as soil 
moisture and surface temperature. This has a direct 
effect on the models’ water and energy balance 
calculations, and may eventually result in 
inaccurate weather predictions.  

For the Oklahoma Mesonet data base surface 
temperature estimates obtained with a recently 
improved retrieval algorithm from the Advanced 
Microwave Scanning Radiometer (AMSR) on 
board NASA’s Earth Observing System (EOS) 
Aqua satellite are evaluated against different 
combinations of model output of the Community 
Noah Land Surface Model and Community Land 
Model (CLM2) operated within NASA/GSFC’s 
Land Information System (LIS) and atmospheric 
forcing data of a variety of sources, i.e. the NCEP 
Global Data Assimilation System (GDAS), the 
European Centre for Medium-Range Weather 
Forecast (ECMWF) and the North American Data 
Assimilation System (NLDAS), based on Eta data 
and supplemented with observation-based 
precipitation and radiation data. The surface 
temperature retrievals and LSM output are further 
evaluated against station measurements from the 
Mesonet observational grid in Oklahoma.      

Preliminary analysis presented here shows the 
satellite derived surface temperature estimates - 
uncorrected for bias - are not necessarily superior 

to the LSM simulations, evaluated against the 
Mesonet observational grid benchmark. In general, 
data assimilation systems take into account 
observational errors and are able, despite errors in 
the observations, to obtain improvement of LSM 
results, as long as the temporal trends are well 
represented. Further, most assimilation systems 
use a bias removal prior to actual assimilation. 
Here, a simple (linear) correction decreases the 
AMSR Ts error beyond the error of simulated Ts. 
Therefore, it will be interesting to see how the 
satellite-derived surface temperature will behave in 
an assimilation scheme in a follow-up study. 
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1. INTRODUCTION 

Surface temperature is a key parameter in many 
energy balance applications such as evaporation 
modeling, climate models, and radiative transfer 
modeling. Ground observations are generally useful 
for local applications, however, they are highly 
intensive in man-power and equipment costs. 
Furthermore, ground observations of surface 
temperature are point measurements and since 
variability can be high, especially in regions with 
discontinuous vegetation, scaling up to spatial 
averages is often difficult.        
 
The most common remote sensing method for 
surface temperature observation is thermal infrared 
(TIR). The MODIS Terra satellite provides daily 
global cover of land surface temperature on a 1km 
resolution. However, TIR is affected by aerosols, 
particulates and other contaminants, usually 
requiring some sort of atmospheric correction. The 
existence of cloud cover will usually render TIR 
observations unusable.  
 
Higher frequency microwave emissions at vertical 
polarization possess a strong physical relationship 
with the thermodynamic temperature of the emitting 
surface. Microwave sensors are less affected by 
atmospheric conditions. Therefore, they have 
potential to provide reliable estimates of averaged 
surface temperature with a near-all-weather 
capability on a scale and coverage compatible with 
NWPs.      
 
A recently developed and further improved 
theoretically-based land surface parameter retrieval 
model (Owe et al., 2001; De Jeu et al., 2003; Owe et 
al., 2005) has demonstrated significant potential for 
providing independent measurements of land surface 
parameters, e.g. surface soil moisture and surface 
temperature. It has enabled the construction of a 
continuous historical global database of satellite 
derived land surface parameters from 1978 through 
to the present, developed from Nimbus-SMMR, 
DSMP-SSM/I, TRMM-TMI, and AQUA-AMSR 
microwave brightness temperature measurements. 
Satellite retrievals of these parameters from this 
database may be combined with modeled and 
observational data in a data assimilation scheme in 
order to generate the best possible data fields. These 
data may then serve for initialization and continuous 
bias correction for NWP models.  
 
Data assimilation is the process of finding the 
model representation which is most consistent with 
the observations (Lorenc, 1995). In essence, data 
assimilation merges a range of diverse data fields 
with a model prediction to provide that model with 
the best estimate of the current state of the natural 

environment so that it can then make more 
accurate predictions. A number of options for data 
assimilation are currently being implemented and 
tested within the Land Information System (LIS) 
developed at NASA Goddard Space Flight Center 
(see below), and will soon be made available. 
  
Here, as a prequel to such more sophisticated data 
assimilation efforts and to tentatively asses its 
feasibility, the LSM surface temperature output is 
simply compared to AMSR-E retrievals and 
station data.   

2. DATA SETS 

2.1. Model Simulations 

The Land Information System (LIS) developed at 
NASA Goddard Space Flight Center is an 
interoperable platform capable of integrating the 
use of land surface models, data management 
techniques and high performance computing 
(Kumar et al., 2006). 
The community Noah land surface model (Ek et 
al., 2003) and the Community Land Model, 
version 2:0 (CLM2) (Dai et al, 2002; Zeng et al., 
2002), are two of the LSMs currently supported by 
LIS. Both are stand- alone, 1-D models, which are 
freely available: Noah from the National Centers 
for Environmental Prediction (NCEP) and CLM2 
from The National Center for Atmospheric 
Research (NCAR). The LSMs can be executed in 
either coupled or uncoupled mode. In uncoupled 
mode, as applied in the present study, near-surface 
atmospheric forcing data is required as input. Here, 
forcing data from the NCEP Global Data 
Assimilation System (GDAS), the European 
Centre for Medium-Range Weather Forecasts 
(ECMWF) and the North American Data 
Assimilation System (NLDAS), based on Eta data 
and supplemented with observation-based 
precipitation and radiation data (Cosgrove et al, 
2003), are used for the year under consideration, i.e. 
2003, thus overlapping the AMSR-E lifetime (2002-
present). The forcing data are: large scale 
precipitation, convective precipitation, specific 
humidity, surface pressure, downward solar 
radiation, downward thermal radiation, air 
temperature, and wind velocity. The temporal 
resolution of the NLDAS forcing time is an hour, 
while GDAS and ECMWF have a 3 hr time step.  
 
The LSMs simulate a range of water- and energy 
balance variables, of which surface (skin) 
temperature is of most interest for the present 
analysis. The models apply finite difference spatial 
discretization methods and (semi-)implicit time-
integration schemes to numerically integrate the 
governing equations of the physical processes of 
the soil-vegetation-snow pack medium, including 
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the surface energy balance equation, the Richards’  

equation (1931) for soil hydraulics, the diffusion 
equation for soil heat transfer, the energy-mass 
balance equation for the snow pack, and equations 
for the conductance of canopy transpiration.  

2.2. Observed Data 

A data set of near-surface temperature (2-3 mm) 
derived from the 37 GHz microwave signal from 
the AMSR instrument on board the EOS Aqua 
satellite for the full year of 2003 is made available 
by Owe et al. (2005). The 37 GHz AMSR-E 
footprint is an oval of 10 km square (sampling 
interval: 10 km), where the derived surface 
temperature fields are resampled in a 0.25 degree 
grid. A subset covering the state of Oklahoma, 
USA is cut from the global dataset. The choice for 
this location is motivated by the presence of sets of 
observational data for the corresponding period of 
time (i.e. the year 2003), made available by the 
Oklahoma Mesonet (Brock et al., 1995).  
 
Observed data is collected from 11 stations located 
within three 0.5 degree grids (Fig. 1), (spatially) 
representative of different types of land cover. The 
5 cm profile temperature measurements are made 
available every half hour and are extrapolated to 2 
mm depth temperature estimates using a soil heat 
transfer algorithm developed by Owe et al., 2005. 
With regard to the AMSR-E antenna, there are two 
types of measurements, a night-time (local time ~ 
01:30, GMT ~ 08:30h) and a day-time (local time 
~ 13:30, GMT ~ 20:30h).  

 

Figure 1. The Oklahoma Mesonet. Observed data 
are taken from stations located within the three 
boxed 0.5 grids. 

3. ANALYSIS 

3.1. Satellite derived surface temperature 

Fig. 2 shows an example of the Oklahoma AMSR-
E surface temperature (Ts) retrievals at night time 
(a) and day time (b), together with the three 0.5 
degree grids within which observational data are 
sampled. 

Fig. 3 shows scatter plots of observed and satellite 
retrieved Ts for two of the selected observational 
sites of the Oklahoma Mesonet. The outliers 
tagged with a blue date are identified as images 
containing precipitating clouds, resulting in an 
underestimated satellite derived Ts of over 15 (K). 
At higher surface temperatures, cloud 
contamination is less detectable with smaller Ts 
differences (Fig. 3, right panel). Most of the cloud 
contaminating conditions occur at day time in 
summer, when convection is strong. While this 
eliminates about 1-3% of the data set, frozen soil 
conditions in winter take out the bulk of the data 
(over 30%). These phenomena seem to put some 
emphasis on ‘near’ in the assessment of the 
passive microwave retrieval of Ts as a ‘near-all-
weather’ technique. Consequently, this also applies 
to the passive microwave soil moisture algorithm 
retrieval, in case the passive microwave Ts estimate 
is used. 

Figure 2. AMSR-E surface temperature retrievals 
on (a) August 22, 2003, 8:20 AM UCT (b) August 
25, 2003, 20:03 UCT. Key, A = Grassland, B = 
Cropland, C = Wooded Grassland. 

Table 1 shows variation of RMSE between the 
three 0.5 degree grid cells and also from station to 
station. Further, satellite derived Ts does not 
necessarily compare better to Ts 2 mm, which was 
modeled from the observed Ts 5 cm using a soil 
heat transfer algorithm (Owe et al., 2005). Despite 
the fact the observed point data only give us an 
estimate of the ‘true’ integrated grid Ts at best, it 
may indicate the heat transfer algorithm needs 
some further fine tuning. In all, the average 
difference between observed and satellite derived 
Ts for our (limited size) data set is over 3 (K). This 
value exceeds the 2 degree soil temperature 
threshold, which was set for microwave space 
based missions in order to achieve a 4 vol. % 
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Figure 3. Observed Ts vs. AMSR-E Ts for stations WATO (left) and BYAR (right), uncorrected for bias. 

precision (or less) in soil moisture retrieval 

(Entekhabi et al., 2004). In an attempt to remove 
systematic bias in the data sets, a simple linear 
correction was carried out. AMSR generally 
overestimates the Mesonet observation, mainly in 
the lower half temperature range (see Fig. 3). 
Bias, however, is not constant, neither over the 
temperature range (i.e. time dependent), nor for 
the individual stations (i.e. place dependent). 
Although the correction removes close to 1 (K) 
error on the average, RMSE remains above the 2 
degree threshold.   

Table 1. RMSE of observed and satellite derived 
Ts for selected Mesonet stations. 

 

3.2. Simulated surface temperature 

Fig. 4 shows the surface temperature at AMSR-E 
night overpass time simulated by the different 
LSM and atmospheric forcing combinations, six 
in total. Fig. 5 is identical, but at day time. At first 
glance, the simulations look similar, indicating 
corresponding cooler and warmer surface areas, 
both for the day and night time overpass. The 
cooler areas, dynamic in space and time, likely 
relate to (convective) clouds, again indicating the 
37 GHz antenna’s weather dependence. The 
cooler areas are less prevalent or absent in the 

NLDAS forced simulations at day time, 
underscoring its deviating temporal and spatial 
properties. Conversely, the similarity of the 
GDAS and ECMWF forced simulation underlines 
the close correspondence of these atmospheric 
forcing data sets.  

Fig. 6 shows the scatter plots of observed and 
simulated Ts for the identical stations as in Fig. 3 
for the LSM-atmospheric forcing combination 
with the smallest RSME. For these two cases this 
is the CLM2 model with NLDAS forcing. Table 2 
contains all 11 observational stations and shows 
the CLM2-NLDAS combination on the average 
compares best with an RMSE of just above 3 (K), 
uncorrected for bias. Some (linear) bias is present 
and RMSE shows improvement after correction, 
although less than in the AMSR data. Further, the 
number of eliminated data (sub zero) is limited 
and constant compared to the AMSR Ts data set, 
as the sample size (n) in Fig. 6 indicates. In all, 
the RMSE of the simulated and satellite derived 
data set, as evaluated against the observed Ts data 
set benchmark, is comparable. However, the 
satellite derived Ts does not necessarily perform 
better than the simulated Ts. In fact, for this 
particular analysis before bias correction, it 
compares slightly worse to the observed data. In 
general, data assimilation systems take into 
account observational errors and are able, despite 
errors in the observations, to obtain improvement 
of LSM results, as long as the temporal trends are 
well represented. Further, most assimilation 
systems use a bias removal prior to actual 
assimilation. A simple (linear) correction carried 
out here decreases the AMSR Ts RMSE beyond 
that of the simulated Ts. Therefore, it will be 
interesting to see how the satellite-derived surface 
temperature will behave in an assimilation 
scheme in a follow-up study.  
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Figure 4. Simulated Ts on August 22, 2003 at the AMSR-E night time overpass for the Oklahoma domain by 
six combinations of LSM and atmospheric forcing (a) CLM2-ECMWF (b) Noah-ECMWF (c) CLM2-GDAS 

(d) Noah-GDAS (e) CLM2-NLDAS (f) Noah-NLDAS. 

 

Figure 5. Simulated Ts on August 25, 2003 at the AMSR-E day time overpass for the Oklahoma domain by 
six combinations of LSM and atmospheric forcing (a) CLM2-ECMWF (b) Noah-ECMWF (c) CLM2-GDAS 

(d) Noah-GDAS  (e) CLM2-NLDAS (f) Noah-NLDAS.
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Figure 6 Observed Ts vs. simulated Ts for stations WATO (left) and BYAR (right), uncorrected for bias.

Table 2 RMSE of observed Ts 2mm and 
simulated Ts for selected Mesonet stations. 

 

3.3. Satellite derived and simulated surface 
temperature 

In perspective of the tentative assessment of the 
feasibility of surface temperature data 
assimilation, the AMSR-E surface temperature 
retrievals are next compared to LSM output fields 
over the entire Oklahoma domain, as depicted in 
Fig 2. The Root Mean Square Difference (RMSD, 
rather than the Error, since the Mesonet data are 
used as benchmark) is computed in three ways: (1) 
without threshold (2) eliminating all subzero data 
and data with RMSD > 10 (K) (3) eliminating all 
subzero data and data with RMSD > 15 (K). 

Table 3 shows that the CLM2-GDAS 
combination compares best to the satellite derived 
Ts over the entire Oklahoma domain with an 
RMSD of just over 3 (K) when applying the most 
restrictive filter (2). This seems consistent with 
the evaluation against observed data, be it that the 
NLDAS forced simulations compare worse here. 
This is possibly explained by the averaging 
temporal and spatial resolution effect of the  

Table 3 RMSD of satellite derived and simulated 
Ts over the Oklahoma domain.  
  

GDAS and ECMWF data. Further, the most 
rigorous filter (2) eliminates about 10-20% of the 
data, while threshold (3) eliminates about 4% less. 
This again implies the frozen soil condition, as in 
the observed data evaluation, cancels the bulk of 
the data. The total percentage of data eliminated, 
however, is lower here, indicating the selection of 
data to be cancelled by hand in the observed data 
evaluation was somewhat less forgiving than then 
the automated procedure. As in the observed data 
evaluation, the minimum difference between 
simulated and satellite derived Ts is over 3 (K), 
which again exceeds the 2 degree temperature 
threshold, which was set for microwave space 
based missions in order to achieve a 4 vol. % 
precision (or less) in soil moisture retrieval  

(Entekhabi et al., 2004). In all, the variation of 
RMSE between the various LSM-atmospheric 
forcing combinations is low, apart from the ones 
forced with NLDAS. This seems to indicate some 
temporal and spatial constraints on the 
assimilation of passive microwave Ts into LSMs. 

4. CONCLUSION 

Evaluation of different data sources of surface 
temperature indicates that satellite derived passive 
microwave Ts is not necessarily a superior 
estimate compared to simulated Ts, if evaluated 
against a data set of observed point 
measurements. In general, data assimilation 
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systems take into account observational errors and 
are able, despite errors in the observations, to 
obtain improvement of LSM results, as long as 
the temporal trends are well represented. Further, 
most assimilation systems use a bias removal 
prior to actual assimilation. Here, a simple (linear) 
correction decreases the AMSR Ts error beyond 
that of the simulated Ts. Therefore, it will be 
interesting to see how the AMSR derived surface 
temperature will behave in an assimilation 
scheme in a follow-up study. 

It should be pointed out that the atmospheric 
forcing data sets used in the present study are 
mainly reanalysis data making use of in-situ 
observations. As a consequence, the model 
simulations over Oklahoma with a dense 
observation network are relatively accurate. 
However, no or little observation data are 
available for most areas and the quality of the 
forcing data - and the model simulations - 
decreases. Hence, in these areas more scope is 
present for remote sensing data to constrain these 
models.   

A further consideration is that the retrieval of 
passive microwave satellite derived surface 
temperature is hampered by weather conditions: 
frozen soil conditions in winter and (precipitating) 
clouds in summer. These phenomena appear to 
put some emphasis on ‘near’ in the assessment of 
the passive microwave retrieval of Ts as a ‘near-
all-weather’ technique. Consequently, this also 
applies to the passive microwave soil moisture 
algorithm retrieval, in case the passive microwave 
Ts estimate is used. 
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