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EXTENDED ABSTRACT 

During the last two decades or so, studies on the 
applications of the concepts of nonlinear dynamics 
and chaos to hydrologic systems and processes 
have been on the rise. Earlier studies on this topic 
focused mainly on the investigation and prediction 
of chaos in rainfall, river flow and lake volume 
data, and further advances were made during the 
subsequent years through applications of the 
concepts to other problems (e.g. data 
disaggregation, missing data estimation and 
reconstruction of system equations) and other 
processes (e.g. rainfall-runoff and sediment 
transport). During the same period, some of the 
important issues in the applications of chaos theory 
to real hydrologic data (e.g. data size, noise, zeros) 
were addressed and comparisons with other 
methods (e.g. stochastic methods, artificial neural 
networks) as to their applicability and performance 
for modeling and prediction of hydrologic 
processes were also made. The outcomes of these 
studies are certainly encouraging, especially 
considering the exploratory stage of the concepts 
in hydrology, although they continue to be under 
certain criticism mainly on the basis of the 
possible ‘blind’ applications of the less-
understood’ chaos concepts without recognizing 
their potential limitations for real hydrologic data. 

Following up on the earlier reviews by Sivakumar 
(2000, 2004), this paper highlights some of the 
latest developments on the applications of 
nonlinear dynamics and chaos concepts in 
hydrology and the challenges that lie ahead on the 
way to further progress. As for their applications, 
studies in the important areas of scaling, 
groundwater contamination, parameter estimation 
and optimization, and catchment classification are 
reviewed and the inroads made thus far are 
discussed. In regards to the challenges that lie 
ahead, particular focus is given to improving our 
understanding of these largely less-understood 
chaos concepts and also finding ways to integrate 
these concepts with the others. With the 

recognition that none of the existing ‘extreme-
view’ modeling approaches is capable of solving 
the hydrologic problems that we are faced with, 
the need for finding a ‘middle-ground’ approach 
that can integrate different methods is stressed. To 
this end, the viability of bringing together the 
stochastic and deterministic chaotic concepts as a 
starting point is also discussed. 
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1. INTRODUCTION 

The inherent nonlinear nature of hydrologic 
systems and the associated processes has been 
known for long (e.g. Izzard 1966; Amorocho 1967; 
Amorocho and Brandstetter 1971). However, 
much of early hydrologic research (1960s-1980s), 
largely constrained by the lack of data and 
computational power, resorted to a linear 
stochastic approach (e.g. Harms and Campbell 
1967; Klemes 1978; Salas and Smith 1981). 
Although the linear stochastic approach continues 
to be prevalent in hydrology, computational 
advances during the last two decades have 
certainly facilitated proposal of a nonlinear 
approach as a viable alternative. The nonlinear 
approach includes nonlinear stochastic methods 
(e.g. Kavvas 2003), artificial neural networks (e.g. 
Govindaraju 2000), data-based mechanistic models 
(e.g. Young and Beven (1994), and deterministic 
chaos theory (e.g. Sivakumar 2000). Among these, 
chaos theory, with its philosophy that complex and 
random-looking behaviors could also be the result 
of even simple nonlinear deterministic dynamics 
with sensitive dependence on initial conditions 
(Lorenz 1963), seems to be ‘the simplest’ and yet 
also ‘the most controversial’ approach [see, for 
example, Schertzer et al. (2002) and Sivakumar et 
al. (2002a) for a debate]. 
 
Amid the controversial nature of the concept, 
chaos theory has been finding increasing 
applications in hydrology in recent times. Earlier 
studies on chaos theory applications in hydrology 
essentially focused on the investigation and 
prediction of chaos in rainfall, river flow and lake 
volume data (e.g. Rodriguez-Iturbe et al. 1989; 
Wilcox et al. 1991; Jayawardena and Lai 1994; 
Abarbanel and Lall 1996; Koutsoyannis and 
Pachakis 1996; Puente and Obregon 1996; 
Porporato and Ridolfi 1997). Subsequent studies 
attempted chaos theory applications on other 
hydrologic problems, including data 
disaggregation, missing data estimation, and 
reconstruction of system equations (e.g. Sivakumar 
et al. 2001b; Elshorbagy et al. 2002a; Zhou et al. 
2002), and other processes, including rainfall-
runoff and sediment transport (e.g. Sivakumar et 
al. 2001a; Sivakumar 2002; Sivakumar and 
Jayawardena 2002). They also addressed some of 
the important issues that have been perceived to 
significantly influence the outcomes of chaos 
methods (because of the underlying assumptions 
of infinite and noise-free data) when applied to real 
hydrologic data, including data size, noise, zeros, 
delay time, and neighborhood selection (e.g. Wang 
and Gan 1998; Sivakumar et al. 1999, 2002c; 
Jayawardena and Gurung 2000; Sivakumar 2001; 
Elshorbagy et al. 2002b; Jayawardena et al. 2002). 

Further, they investigated the ‘superiority’ of 
chaos theory, if any, over other theories, such as 
stochastic methods and artificial neural networks, 
for prediction purposes (e.g. Jayawardena and 
Gurung 2000; Lisi and Villi 2001; Sivakumar et al. 
2002b, c; Laio et al. 2003). Extensive reviews of 
these studies are already available in the literature 
(Sivakumar 2000, 2004a) and, therefore, details 
are not reported herein. 

The realization and recognition, in the aftermath of 
the encouraging outcomes from most of the above 
studies, that chaos theory could provide a new 
perspective towards understanding the workings of 
hydrologic systems and processes have been 
important driving forces for its ever-increasing 
applications, despite the continuing skepticisms 
being thrown away from some quarters of the 
hydrologic community largely based on the 
possible ‘blind’ applications of the less-
understood’ chaos concepts without recognizing 
their potential limitations for real hydrologic data 
(the result of which could be ‘false claims’). While 
this is indeed heartening, we must not lose sight of 
the fact that the true potential of chaos theory in 
hydrology can only be realized when it is 
attempted to solve the more challenging problems 
we are faced with (such as scaling and parameter 
estimation problems), rather than simply chaos 
identification and prediction problems. 
Identification of these challenging problems and 
evaluation of how chaos theory (either 
independently or in combination with others) can 
be helpful in solving such problems are crucial for 
true progress in hydrology. These questions, 
therefore, form the basis for the present study. 

To address the above questions in an effective 
manner, it is important first of all to be well aware 
of the latest developments in chaos theory 
applications in hydrology and the significant 
inroads we have been able to make thus far. This is 
done herein through a comprehensive review of 
some of the important studies carried out in this 
area during the last few years [especially since the 
reviews of Sivakumar (2000, 2004a)]. With this 
status quo, which already identifies some of the 
challenging problems in hydrology and also hints 
at the utility and appropriateness of chaos theory 
(e.g. Sivakumar 2004b), potential scope and 
directions for further applications are highlighted. 
A strong case is also made, both from 
philosophical and from scientific perspectives, for 
the urgent need of a middle-ground approach 
(coupling the stochastic approach and the 
deterministic approach, for example), rather than 
an extreme approach that seems to prevail in our 
current research practice. 
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2. RECENT DEVELOPMENTS IN CHAOS 
APPLICATIONS IN HYDROLOGY 

Since the reviews by Sivakumar (2000, 2004a), 
ideas gained from nonlinear dynamic and chaotic 
theories have found their applications in a few 
other areas of hydrology as well, including scaling, 
groundwater contamination, parameter 
optimization and catchment classification. 
 
Regonda et al. (2004) employed the correlation 
dimension method (Grassberger and Procaccia 
1983) to investigate the type of scaling behavior 
(stochastic or chaotic) in the temporal dynamics of 
river flow. Analyzing daily, 5-day and 7-day flow 
data from each of three rivers in the United States, 
they reported the presence of chaotic scaling 
behavior in the flow dynamics at the Kentucky 
River and the Merced River, and stochastic scaling 
behavior in the flow dynamics at the Stillaguamish 
River. They also observed that the 
‘dimensionality’ of the flow dynamics increasing 
with the scale of aggregation; in other words, 
dynamics changing from a more deterministic 
behavior to a more stochastic behavior with 
aggregation in time. Similar results on the effects 
of data aggregation (i.e. change from determinism 
to stochasticity with increasing time scale) were 
also independently observed by Salas et al. (2005) 
and Sivakumar et al. (2004, 2007), albeit in 
different contexts and employing different 
methodologies. The presence of chaotic behavior 
in flow scaling has important implications in 
hydrology, since it has been a common practice to 
employ stochastic (random) cascade approaches in 
scaling investigations and for data disaggregation. 
 
As noted by Sivakumar (2004a), the field of 
subsurface hydrology had largely eluded the 
attention of chaos studies earlier. To this end, 
especially with the experience gained with the 
surface hydrologic problems and the encouraging 
outcomes, Sivakumar et al. (2005) investigated the 
potential use of chaos theory to understand the 
dynamic nature of solute transport process in 
subsurface formations. They analyzed time series 
of solute particle transport in a heterogeneous 
aquifer medium (which was simulated using an 
integrated transition probability/Markov chain 
model, groundwater flow model, and particle 
transport model, for varying hydrostratigraphic 
conditions) using the correlation dimension 
method. The results generally indicated the 
nonlinear deterministic nature of solute transport 
dynamics (dominantly governed by only a very 
few variables, on the order of 3), even though 
more complex behavior was found to be possible 
under certain extreme hydrostratigraphic 
conditionsns. Later, Hossain and Sivakumar 

(2006) studied, employing the correlation 
dimension method, the spatial patterns of arsenic 
contamination in the shallow wells (< 150 m) of 
Bangladesh. Particular emphasis was given to the 
role of regional geology (Pleistocene vs. 
Holocene) on the spatial dynamics of arsenic 
contamination. The results, with correlation 
dimensions ranging between 8 and 11 depending 
on the region, suggested that the arsenic 
contamination in space is a medium- to high-
dimensional problem. The results were further 
verified using logistic regression, with an attempt 
to explore possible (physical) connections between 
the correlation dimension values and the 
mathematical modeling of risk of arsenic 
contamination (Hill et al. 2007). 
 
With the ever-increasing complexities of 
hydrologic models, which require more details 
about processes and more parameters to be 
calibrated, parameter estimation and optimization 
has become an extremely challenging problem 
[see, for example, Beven (2002) for details]. In an 
attempt towards simplifying this problem, 
Sivakumar (2004b) proposed an approach that 
incorporates and integrates the chaos concept with 
expert advice and parameter optimization 
techniques. The simplification is brought out 
essentially through the determination (using the 
correlation dimension method) of the ‘number’ of 
dominant variables governing the system under 
study, with the use of only a limited amount of 
data (often data corresponding to a single variable) 
representing the system. Hossain et al. (2004), in 
their study of Bayesian estimation of uncertainty in 
soil moisture simulation by a Land Surface Model 
(LSM), presented a simple and improved sampling 
scheme to the Generalized Likelihood Uncertainty 
Estimation (GLUE) by explicitly recognizing the 
nonlinear deterministic behavior between soil 
moisture and land surface parameters in the 
stochastic modeling of the parameters’ response 
surface. They approximated the uncertainty in soil 
moisture simulation (i.e. model output) through a 
Hermite polynomial chaos expansion of normal 
random variables that represent the model’s 
parameter (model input) uncertainty. 
 
The realization that hydrologic models are often 
developed for specific situations and thus that their 
extensions and generalizations to other situations 
are difficult has recently motivated researchers to 
call for a catchment classification framework 
(Woods 2002; Sivapalan et al. 2003; McDonnell 
and Woods 2004). According to them, 
identification of dominant processes may help in 
the formation of such a classification framework. 
With this idea, Sivakumar (2004b) introduced a 
classification framework, in which the extent of 
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complexity or ‘dimensionality’ (determined using 
nonlinear tools, such as the correlation dimension 
method) of a hydrologic ‘system’ is treated as a 
representation of the (number of) dominant 
processes. Following up on this, Sivakumar et al. 
(2007) explored the utility of the phase-space 
reconstruction (a fundamental step in the 
applications of chaos methods), in which the 
‘region of attraction of trajectories’ in the phase-
space is used to identify the data as exhibiting 
‘simple’ or ‘intermediate’ or ‘complex’ behavior 
and, correspondingly, classify the system as 
potentially low-, medium- or high-dimensional. 
The utility of this reconstruction concept was first 
demonstrated on two artificial time series 
possessing significantly different characteristics 
and levels of complexity, and then tested on a host 
of river-related data representing different 
geographic regions, climatic conditions, basin 
sizes, processes and scales. The ability of the 
phase-space to reflect the river basin 
characteristics and the associated mechanisms, 
such as basin size, smoothing, and scaling, was 
also observed. 
  
There have also been several other studies that 
have, in one way or another, looked into the 
applications of chaos theory in hydrology. These 
include applications to understand the processes, 
such as rainfall-runoff (e.g. Dodov and Foufoula-
Georgiou 2005) and soil nutrient cycles (e.g. 
Manzoni et al. 2004), and those to investigate the 
reliability of the chaos methods for hydrologic 
data, such as data size (e.g. Sivakumar 2005a) and 
others (e.g. Khan et al. 2005). Due to space 
constraints, details of these studies (and many 
others) are not reported herein. 
 
3. ACHIEVEMENTS THUS FAR AND 

CHALLENGES THAT LIE AHEAD 
 
It must be clear by now that we have made some 
sincere efforts to explore the potential of nonlinear 
dynamic and chaos concepts for modeling and 
prediction of hydrologic systems. The outcomes of 
these efforts are certainly encouraging, considering 
the fact that we are still in the exploratory stage in 
regards to these concepts, as opposed to the much 
more established and prevalent stochastic concepts 
(wherein also, by the way, we are struggling with 
the interpretation of the methods and outcomes). 
The additional inroads we have made in recent 
years in the areas of scaling, groundwater 
contamination, parameter estimation and 
optimization, and catchment classification, among 
others, are significant, albeit their preliminary 
nature, since these are arguably some of the most 
important topics in hydrology at the current time. 

With these positives, however, we must not forget 
the challenges that lie ahead on our way to 
progress. Among such challenges, two are 
noteworthy: (1) improving our understanding of 
the largely less-understood chaos concepts; and (2) 
finding ways to integrate these concepts with the 
others, either already in existence or emerging in 
the future. The former is important for avoiding 
‘blind’ applications of the related methods (simply 
because the methods exist) and ‘false’ claims 
(either in support of or against their utility); and 
the latter is important for taking advantage of the 
merits of the different approaches for their 
‘collective utility’ to solve hydrologic problems 
rather than their ‘individual brilliance’ as 
perceived. In what follows, some examples are 
provided as to the potential limitations of the 
above studies and possible ways to improve them. 
 
The studies by, for instance, Regonda et al. (2004) 
and Salas et al. (2005) provide interesting insights 
into the problem of scaling and effects of data 
aggregation. Their message, in essence, is that the 
‘complexity’ of the system dynamics increases 
(from more determinism to more stochasticity) 
with aggregation in time scale. While this may 
indeed be the case in certain situations, its 
generalization is often difficult to make, since the 
system’s dynamic complexity depends on the 
catchment characteristics and the inputs. For 
example, the catchment area (and, hence, the time 
of concentration, not to mention the rainfall 
characteristics) plays a vital role in defining the 
relationship between data aggregation and 
dynamic complexity. In fact, depending on the 
catchment, the dynamic complexity may increase 
with aggregation in time up to a certain point 
(probably, somewhere close to the concentration 
time) and then decrease with further aggregation 
[see Sivakumar et al. (2004) for an example in a 
disaggregation context]. 
 
The attempts by Sivakumar et al. (2005) and 
Hossain and Sivakumar (2006) to search for 
possible nonlinear deterministic dynamics in solute 
transport in a heterogeneous aquifer and arsenic 
contamination in shallow wells are certainly 
interesting. However, these studies are crude one-
dimensional simplifications, at best, to the 
complex three-dimensional groundwater flow and 
transport phenomena. They only consider the time 
or space (as the case may be), but what is actually 
needed is a spatio-temporal perspective. Moreover, 
while there is no ‘mathematical’ constraint, the 
‘philosophical’ merit behind the use of phase-
space reconstruction concept in a spatial context 
(with its delay parameter defined in space), as is 
done in Hossain and Sivakumar (2006), remains  
an issue to ponder. 

1557



  

The proposal by Sivakumar (2004) on the 
integration of different concepts/methods to deal 
with the workings of hydrologic systems, more 
specifically to simplify the existing parameter 
optimization procedures, is a notable move 
forward, as different concepts/methods possess 
different advantages and limitations. However, the 
utility and effectiveness of this proposal are yet to 
be seen through implementation. Similarly, the 
proposal on the use of a data-based reconstruction 
approach for ‘system classification’ and its 
effective testing on river-related data, as presented 
by Sivakumar et al. (2007), seem to provide strong 
clues to the potential of such an approach for 
formulation of a catchment classification 
framework. What remains to be studied, however, 
is how to incorporate the catchment characteristics 
into this classification framework and how to 
establish connections between data (usually at the 
catchment scale) and the actual catchment physical 
mechanisms (at all scales) for this classification 
framework to be successful. 
 
These are some of the important questions that 
need attention to advance further our 
understanding of the role nonlinear dynamic and 
chaos concepts can play in hydrology. While there 
is every positive indication that this will be done, 
sooner rather than later, such alone may not be 
sufficient to solve the hydrologic problems that we 
are faced with today and will be facing in the 
future. What is required, as experiences suggest, is 
a change in our research paradigm and attitude 
[see, for example, Gupta et al. (2000) for a similar 
opinion, albeit from a different perspective]. 
 
4. CONCLUSION – STRIVING FOR A 

MIDDLE-GROUND 
 
Every human being has his/her own perceptions 
about the workings of nature, which, to a great 
extent, are influenced by his/her societal, cultural, 
economic and environmental backgrounds, among 
others. The authors believe that these perceptions 
are generally the driving force for selecting his/her 
field of study and research and also for identifying 
the methods for applications, although it is 
becoming increasingly difficult these days with 
our society’s lifestyles and pressures, largely 
driven by the economy. 
 
We, researchers in hydrology, are also starting to 
put more emphasis on applications of specific 
concepts and methods rather than on addressing 
the most challenging hydrologic problems 
affecting us all, if literature is any indication [see, 
for example, Sivakumar (2005b) for details]. We 
are also increasingly realizing that none of the 
tools that are currently available (linear or 

nonlinear, stochastic or chaotic) is adequate by 
itself for solving our hydrologic problems to our 
satisfaction (in other words, ‘accurate’ modeling 
and prediction). The following are only a few 
examples of the numerous questions that need to 
be asked about our existing research approaches 
and methods to tackle the challenges in hydrology: 
How are we going to incorporate the nonlinear 
deterministic components that are inherent in 
hydrologic systems and processes in our linear 
(and nonlinear) stochastic approaches? How are 
we going to address the property of sensitive 
dependence of hydrologic system dynamics on the 
initial conditions, when the initial conditions 
themselves cannot be known? How are we going 
to explain the ‘random’ and unpredictable system 
behavior using our (nonlinear) deterministic 
approaches? How are we going to estimate the 
uncertainty in the parameters that serve as 
important inputs to our complex models, and even 
worse how are we going to define uncertainty? 
How are we going to establish the ‘connections’ 
between our ‘data-based’ approaches and the 
‘process-based’ approaches, especially when there 
are ‘disconnections’ (either intended or 
unintended) in our research approaches? 
 
These are difficult questions to answer, and the 
only way, in the opinion of the authors, is to find 
‘common grounds’ in our approaches to research. 
This does not mean that someone has to ‘give up’ 
his/her ideas to make way for others’, but this 
certainly requires some kind of ‘compromise’ and 
‘sacrifice’ for the betterment of the hydrologic 
community. To this end, bringing together the 
linear (and nonlinear) stochastic concepts and 
nonlinear deterministic chaotic concepts could be a 
good starting point. The stochastic concepts have 
already been well established in hydrology, 
although improvements are needed for their more 
effective and efficient applications. On the other 
hand, the nonlinear dynamic and chaos concepts 
still remain largely unexplored, although we are 
certainly starting to see encouraging signs of their 
potential, as the review herein indicates. Let us 
hope for a new chapter in hydrology, one that finds 
a ‘middle-ground’ and yet capture the ‘extremes.’ 
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