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EXTENDED ABSTRACT 

In model identification, calibration or sensitivity 
analysis, the model-parameter values may be 
required to yield model-output values that satisfy 
specified constraints, for given initial conditions 
and forcing. Inequality constraints on scalar 
functions of the model outputs (henceforth called 
output bounds) confine the parameters to their 
feasible set. Output bounds are fundamental to 
regional sensitivity analysis and a desirable 
addition to multi-objective calibration. 

In large simulation models, there is limited prior 
knowledge of how such output bounds translate 
into parameter bounds, so the nature of the 
feasible set is largely unknown. The simplest way 
to locate and explore the feasible set is to run the 
model for each of a large number of samples of 
the parameter values and note those that meet the 
output bounds. However, the feasible set may be 
almost in a subspace of the parameter space and 
may be fragmented into feasible subregions, some 
perhaps small. In such cases brute-force search, 
sampling from a uniform distribution or over a 
regular grid, is impracticable, as very few samples 
prove feasible. A more efficient approach is 
presented here. It fits ellipsoids to samples 
satisfying individual pairs of output bounds, using 
Khachiyan’s algorithm, which approximates the 

ellipsoid most tightly bounding the convex hull of 
an arbitrary collection of points.. A minimum-
volume ellipsoidal outer bound is then fitted to 
the intersection of two such ellipsoids by an 
algorithm described by Maksarov and Norton. 
The rest of the ellipsoids are incorporated one by 
one in successive applications of the algorithm, 
until the final ellipsoid approximates the feasible 
set.  

The technique is tested on a demanding synthetic 
example and on the IHACRES rainfall-runoff 
model. In the former it approximates the feasible 
set well even when no sampled parameter-vector 
value is feasible. In the latter, the feasible set is 
defined by bounds on three complementary 
objective functions. Useful approximations of the 
non-convex feasible set are found. Simple bound 
relaxation is effective in reducing the number of 
trials needed to produce enough parameter-vector 
values meeting single-objective bounds to allow 
use of Khachiyan’s algorithm. 

There is scope for refining the procedure by 
exploring for feasible points about each ellipsoid 
as soon as it is fitted. Further experience with 
larger models, where efficiency is critical to the 
practicability of sampling-based investigation of 
the feasible set, is required.   
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1. INTRODUCTION 

This paper addresses a problem that arises in 
sensitivity assessment (SA) of large simulation 
models and constrained multi-objective (MO) 
optimization (Fonseca and Fleming 1998) for 
model identification or calibration of an existing 
model. Regional sensitivity analysis (RSA) (Spear 
et al. 1994) investigates the feasible set of all 
model-parameter values yielding, for given initial 
conditions and forcing, model outputs that meet 
requirements expressed as scalar inequality 
constraints, henceforth called output bounds. The 
feasible set must also be identified if output 
bounds are to be applied in MO calibration or 
identification. Such bounds impose hard objectives 
to be attained before optimizing soft objectives. 
SA and MO model development are becoming 
recognised as essential for complex models. 

In principle, the feasible set may be found either 
by inverting the output bounds analytically 
through the model to yield parameter bounds or 
simply by noting which parameter values in a large 
number of samples give outputs which fall within 
the output bounds, as in RSA. The former is 
seldom practicable for large non-linear models, 
although methods exist for smaller models (Jaulin 
et al. 2001; Milanese and Novara 2004). In RSA of 
large models, the feasible set is found typically to 
lie almost in a lower-dimension manifold in 
parameter space (Spear et al. 1994). The cause is 
over-parameterization of models of complex 
and/or distributed processes with aggregate 
behaviour simple enough to be approximated well 
by a reduced model; such models are often 
preferred as they can incorporate knowledge of 
physical processes (Reichert and Omlin 1997). The 
feasible set then fills very little of the region 
explored, few of the parameter values tested are 
feasible, and sampling is inefficient. It may well 
miss portions of the feasible set, especially if they 
are disjoint, as in an example below. 

The problem of inverting a model to translate 
output bounds into parameter (or state or input) 
bounds is set inversion: subjecting a set to an 
implicit inverse mapping. Identifying the feasible 
set by forward runs with parameter values from 
dense random sampling or on a fine grid is 
impracticable for high-dimension spaces. Indeed, 
even for a few parameters the computing load of 
running a large simulation model may so restrict 
sampling as to make the feasible set hard to 
identify. A more economical way to find feasible 
points is needed. The approach presented here fits 
ellipsoids, first to parameter samples satisfying 
successive subsets of the output bounds, then to 
intersections of those ellipsoids, and ultimately to 

the feasible set. Existing ellipsoid-fitting 
algorithms (Milanese et al., 1996; Maksarov and 
Norton, 1996) are used. Advantages of ellipsoids 
for bounding include simple specification (by 
centre and symmetric describing matrix), relatively 
easy checking whether two of them intersect or 
one contains the other (Norton, 2005) and ability 
to minimize their size via the trace or determinant 
of the describing matrix (Schweppe 1968, 
Chernous'ko 1994, Durieu et al. 1996, Maksarov 
and Norton 1996). Other bounding objects, e.g. 
parallelotopes (Chisci et al. 1996) or limited-
complexity polytopes (Veres et al. 1999), are as 
simple to specify but rather more complicated to 
fit, check and optimize. A limitation is that 
ellipsoids cannot tightly fit asymmetric or non-
convex sets.    

2. PROCEDURE TO SEEK FEASIBLE SET 

In the absence of prior information, parameter 
values are sampled from a uniform distribution. 
Then, for each pair of upper and lower output 
bounds in turn, an ellipsoidal outer bound is fitted, 
by the algorithm of Khachiyan (1996), around 
parameter-space points found to be feasible with 
respect to those bounds alone. Each ellipsoid 
excludes no feasible point found but may include 
infeasible ones. Next, another established 
algorithm (Maksarov and Norton, 1996) is used to 
find the minimum-volume ellipsoid, from a 
parametric family, containing the intersection of 
two ellipsoids. In successive stages it outer-bounds 
the intersection of 2, 3, ..., all of the initial 
ellipsoids. Thus it outer-bounds all samples (if 
any) meeting all bounds, but may exclude feasible 
points not yet found. As the new ellipsoids include 
some infeasible segments, the end result is 
suboptimal. Disjoint ellipsoids at any stage may 
indicate a need to loosen incompatible bounds. 

This procedure exploits the fact that the feasible 
set taking all bounds together has abrupt changes 
in boundary gradient where bounds join and may 
also be small and/or fragmented, yet the feasible 
sets for single bound pairs are larger, have 
smoother boundaries easier to approximate, and 
will be less fragmented. Hence, they generally take 
far fewer samples each to characterise than the 
feasible set for all bounds. Moreover, the 
intersection of the fitted one-bound-pair sets may 
be a useful guide to the overall feasible set even if 
no sample point meets all bounds. The procedure 
requires, of course, enough samples to define each 
one-bound-pair set adequately. Even then, its 
effectiveness in reducing the region to be explored 
for values feasible overall depends on how well the 
one-bound-pair ellipsoids fit those sets.  
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Khachiyan’s algorithm requires at least n+1 points 
to find the minimum-volume n-dimensional 
circumscribing ellipsoid. If the feasible region for 
a single bound pair is small, dense sampling may 
be needed to find enough feasible parameter  
values. Instead, if initial sampling fails to find n+1 
points, bound relaxation is initiated. Let the 
bounds on a scalar function of outputs y be L≤ 
f(y)≤ U. They are relaxed in steps δx until m 
samples meet L-kδx≤ f(y)≤ U+kδx. The m points 
are then evolved to satisfy the original bounds, 
using the MOCOM-UA genetic algorithm (Yapo 
et al. 1998). Points closer to meeting the original 
bounds are given better fitness ranks. The bounds 
are then tightened in steps δx, points meeting L-
iδx≤ f(y)≤ U+iδx but no tighter bounds being given 
fitness rank i. The coarse fitness quantisation may 
assign all points equal fitness, causing MOCOM-
UA to terminate prematurely unless the rank is 
zero. If so, the outermost bound is contracted until 
at least one point is infeasible, but not all m. At 
least one point then has rank differing from the 
others', and fitness assignment as above is 
repeated.  

3. EXAMPLES 

3.1. An Artificial Example 

The first example finds the feasible set of an 
instantaneous, 2-parameter, 2-output model subject 
to linear and quadratic output constraints. The 
model is 
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bounds are quite complicated, with two distinct 
feasible regions. 

Figure 1 shows the results of ellipsoidal bounding 
and compares them with the exact solution. 
Although only 35 of 200 parameter points sampled 
from a uniform distribution satisfy one or more 
bounds and none meets all of them, the procedure 
discovers that there are two distinct feasible 
regions and estimates their sizes and locations. 
This is despite the output bounds yielding 
asymmetric, non-convex feasible subsets, which 
ellipsoids cannot fit well. Aspects of the algorithm 
needing refinement also emerge. First, an ellipsoid 
fitted to random points meeting a subset of bounds 
tends to exclude narrow, extreme, unexplored parts 
of the feasible region. As a result, the ellipsoids 
that bound regions feasible for subsets may not 
enclose the joint feasible set. In future, each 

ellipsoid could be refined, e.g. by exploring around 
the ends of its axes. Second, the smallest ellipsoid 
fitted to samples from a non-convex set may 
greatly overestimate its volume. Poor fits could be 
noted and costlier fitting initiated, e.g. fitting 
ellipsoids to subsets of the points and taking their 
union. 

Figure 1. Example I. A: minimum-volume 
ellipsoids fitted around points meeting each 

objective’s bounds. B: approx. bounds on feasible 
set, i.e. minimum-volume ellipsoids (coloured) 
containing intersection of ellipsoids in A.  C: 

compares results B with exact solutions.  Single-
output bounds light grey lines, feasible set shaded 

grey. 

3.2. IHACRES Rainfall-runoff Model 

Next, the procedure finds the feasible set for the 
IHACRES model (Jakeman et al. 1990). Coupling 
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it to MOCOM-UA then shows how it can speed up 
finding the Pareto set in MO calibration.  

The IHACRES model was calibrated for the 105 
km2 Murrindindi catchment in Victoria, Australia. 
IHACRES is a conceptual-empirical model with a 
non-linear loss module to convert daily rainfall and 
temperature into effective rainfall and a linear 
routing module converting effective rainfall into 
stream flow. Each module has three parameters 
(Table 1), with loose prior bounds known. Daily 
records from 1976 to 1996 are available, split for 
this study into sets A, B and C, each spanning 
seven years.  

Calibration uses three objective functions: mean 
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flow, subscripts O and M denote observed and 
modelled values and ε is a small number to avoid 
overflow when Q is zero. The objectives yield 
different parameter estimates and hydrographs. R2 
tends to highlight peak-flow errors while 2

invR  
gives most weight to low flows. The intersection 
of the bounds relating to all three determines the 
feasible set. 

The ellipsoidal-bounding procedure was first 
applied to the linear module. Effective rainfall as 
input was obtained from the pre-calibrated non-

linear module. The objectives were bounded by 
2020 ≤≤− bias , 13.0 2 ≤≤ R  and 13.0 2 ≤≤ invR . 

For each data set, ellipsoidal bounding used 100 
parameter-vector samples from a uniform 
distribution. Figures 2, 4 and 6 and Table 2 show 
the results. They differ between the three data sets. 
For set A, containing the driest seven-year period, 
a smaller range of parameter values meets the 
bounds on bias than for set B or C. Thus, the 
IHACRES model is more sensitive at low flows to 
linear-module parameter changes. The small 
proportion of samples meeting the 2

invR  bounds, 
which give more weight to low flows, supports 
this. For set C, the parameter ranges meeting the 
R2 and 2

invR  bounds are much smaller than for set 
A or B. The years spanned by set C have most 
variation in rainfall and stream flow, so the 
model’s ability to fit highly fluctuating stream 
flows is sensitive to changes in the linear-module 
parameters. This is expected, as IHACRES tends 
to underestimate flow peaks and overestimate low 
flows. For data set A, Figure 3 compares the 
ellipsoidal approximation to the feasible set with 
feasible points from dense sampling; the ellipsoid 
locates the feasible region but underestimates its 
volume. 

For set B, no sample points meet all the bounds.  
Even so, the ellipsoid successfully identifies the 
existence and location of the feasible region. As 
seen in Figure 4, the feasible region is non-convex, 
so the ellipsoid overestimates its volume. Figure 5 
compares the ellipsoid with a set of feasible points 
found, at high computational cost, by dense 
sampling from a uniform distribution. 

The feasible region for data set C is small and hard 
to find since it lies at the intersection of extreme 
sections of the individual bound regions. Again, no 
points satisfy all bounds. The resulting ellipsoidal 
bound (Figure 7) is comparable in size to the 
feasible set but does not intersect it. 

Table 1. Parameters of the IHACRES model, with their initial uncertainty. 

Module Parameter Physical interpretation Prior bounds 
Tw Drying rate at reference temperature 1 < Tw < 100 
f Temperature dependence of drying rate 0 < f < 10 Linear 
c Mass-balance term (a scaling factor) 0 < c < 0.01 
Tq Quick-flow time constant 0 < Tq < Ts 
Ts Slow-flow time constant Tq <Ts < 500 Non-linear 
Vs Slow-flow volume proportion 0 < Vs < 1 
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Table 2. Number of parameter samples, out of 
100, meeting output bounds. 

No. of samples meeting 
single-objective bounds Data 

set bias∈ 
[-20,20] 

R2 ∈ 
[0.3,1] 

2
invR ∈  

[0.3,1] 

No. of 
samples 
meeting 

all bounds 

A 15 13 6 6 
B 64 19 27 0 
C 34 4 4 0 
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Figure 2. Data set A.  Minimum-volume ellipsoids 
for bounds on single objectives (grey) and 

ellipsoid containing their intersection (black).  All 
points meeting 2

invR  bounds also meet those on R2 
and bias, so ellipsoid of intersection coincides with 

ellipsoid meeting 2
invR  bounds. 
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Figure 3. Data set A.  Ellipsoid of intersection and 
221 feasible points by dense u.d. sampling. 
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Figure 4. Data set B.  Minimum-volume ellipsoid 
for single-objective  bounds (grey) and ellipsoid 

containing their intersection (black). 
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Figure 5. Ellipsoid of intersection for data set B 
and 138 feasible points by dense u.d. sampling. 
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Figure 6. Data set C. Minimum-volume ellipsoids 
for a single-objective bound pairs (grey) and 

ellipsoid containing their intersection (black).  No 
points meet all bounds simultaneously. 
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Figure 7. Ellipsoid of intersection for data set C 
and 109 feasible points by dense u.d. sampling. 

The procedure was also used to seek the feasible 
set of the full 6-parameter IHACRES model with 
objective bounds 55 ≤≤− bias , 13.0 2 ≤≤ R  and 

13.0 2 ≤≤ invR . Of 3000 u.d. parameter samples, 15 
meet the bias bounds, 8 those on R2 and 10 those 
on 2

invR . Ten samples meet all the bounds. Figures 
8 and 9 show the ellipsoid of intersection and 100 
feasible points obtained by dense u.d. sampling. 
To help visualize the fit of the 6-dimensional 
ellipsoid to the feasible set, the figures show 3-
dimensional projections of the ellipsoid with the 
parameters of the non-linear and linear module 
respectively set at the ellipsoid centre. As an 
indication, 18 of 100 feasible points in a larger 
sample lie within the 6-dimensional ellipsoid. The 
feasible set is non-convex, so an ellipsoidal bound 
on it cannot be tight, yet the ellipsoid 
approximately locates the feasible set.   
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Figure 8. Projection of intersection ellipsoid onto 
space spanned by parameters of non-linear 

IHACRES module.  Ellipsoid is compared with 
100 feasible points.   
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Figure 9. As for Figure 8 but for linear-module 
parameters. 

Bound relaxation results for linear IHACRES 
module:  Recall that Khachiyan’s algorithm 
requires at least n+1 points to find the minimum-
volume ellipsoid circumscribing them. The full 
IHACRES model required a large sample to find 
enough points meeting each bound pair. Bound 
relaxation to reduce the number required was first 
employed for the linear module of IHACRES.  The 
objectives were bounded by 2020 ≤≤− bias , 

13.0 2 ≤≤ R  and 13.0 2 ≤≤ invR  and 20 parameter 
samples drawn. The experiment was repeated 100 
times with independent samples and the average 
number of feasible points calculated. Bound 
relaxation generated an average of 13 new points 
in finding a minimum of 4 points satisfying each 
bound pair, giving an average total sample size of 
33. In comparison, a u.d. random sample of 33 
points generally found too few points satisfying 
each bound pair (Table 3). 

Table 3. Average number of samples satisfying 
each bound pair, with and without bound 

relaxation. 

Mean no. of samples within 
individual bound pairs Bound 

relax 
-ation Bias∈ 

[-20,20] 
R2 ∈ 

[0.3,1] 

2
invR ∈  

[0.3,1] 

Total no. 
of samples 
within at 
least one 

bound pair 
Yes 13.51 9.26 4.69 33.14 
No 4.32 3.36 1.41 33 

Bound relaxation results for full IHACRES 
model: Above, a u.d. sample of 3000 points was 
required for a high probability of generating 
enough points meeting each bound pair in the full 
IHACRES model. The efficacy of bound 
relaxation is demonstrated by a sample of just 200 
u.d. points in the 6-dimensional parameter space. 
On average, only one point satisfies any of the 
bound pairs, that on bias. To find a minimum of 
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n+1 = 7 points meeting each bound, bound 
relaxation needs an average of only 49 new points. 

4. CONCLUSION 

A method of approximately bounding sections of 
the feasible parameter set of complex models, 
using ellipsoids, has been presented. It needs no 
prior knowledge of the feasible set. In examples, 
the feasible set is approximated usefully even 
when no trial parameter values prove feasible for 
all output bounds. The procedure can identify 
disjoint regions of the feasible set without 
resorting to cluster analysis. However, further 
work is desirable to develop a means of refining 
the size and shape of the ellipsoids employed.  

Application to constrained MO hydrological 
modelling was demonstrated for an IHACRES 
model, chosen because it is well understood and 
relatively easily analysed. Future work should 
apply the technique to more complex models. 
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