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ABSTRACT

In order to understand volatility transmission between
financial assets a multivariate model is essential.
This paper looks at using graphical modelling to
study volatility transmission. Graphical modelling
is a technique that objectively test all potential
influences on an index from its own past and other
indices. The influences of the other indices can be
contemporaneous. The results of graphical modelling
are compared to the standard econometric tool for
measuring multivariate volatility, the multivariate
BEKK-GARCH model. The data used for this
investigation is the daily closes of the Standard and
Poor’s 500 Composite Index (S&P 500), FTSE 100
and Nikkei 225. The period of investigation is from
3 April 2001 to 31 March 2005. The three stock
indices are widely followed and over a 24 hour period
and there is little overlap in trading hours. The
Dickey-Fuller and Phillips-Perron tests confirm that
for all three series that the log returns are first order
stationary and the index prices are not stationary in
mean. JEL CLASSIFICATIONS: C22, C32, C51
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1 GRAPHICAL MODELLING

Graphical models in a time series context aim to find
causal links between past and present observations.
In addition, it also allows the study of causality
among contemporaneous variables, that is, variables
measured at a single point in time. Graphical
modelling can be applied vector autoregressive
moving average models but here the interest is
restricted to vector autoregressive (VAR) models. The
general form of a VAR(p) model (5) is

xt = c + Φ1xt−1 + Φ1xt−2 + . . . +
+Φpxt−p + εt (1)

where xt is a m x 1 vector of variables measured at
time t. Also, εt is assumed to be NID ∼ (0,Ω)
where Ω is a general covariance matrix.

The equation 1 does not allow for contemporaneous
dependence. One way of allowing contemporaneous
dependence is to multiply both sides of the equation
by a matrix Φ0 giving

Φ0xt = d + Φ∗1xt−1 + Φ∗2xt−2 + . . . +
+Φ∗pxt−p + at (2)

There are two restrictions applied to equation 2 (7).
The first is that the variance matrix of at = Φ0εt is
diagonal and the second that Φ0 is upper triangular
with a unit diagonal. Φ0 represents the causal
dependence of each variable on its contemporaneous
counterparts.

In this context each causal relationship for the
variance is considered a volatility channel with the
squared log returns acting as proxy for variance. This
means the appropriate underlying model for squared
log returns is a multivariate ARCH model.

To better understand the model being fitted first
consider the unconstrained multivariate ARCH model
(4).

E(Yt|Yt−1) = 0
V ar(Yt|Yt−1) = Ht

where the elements of Ht are affine functions of
squared lagged observation.

The volatility equation is

Ht = c + AYt−1Y
′
t−1

These equations allow volatilities and covolatilities
to be modelled using past squared values, Y 2

i,t−1,
and cross-products, Yi,t−1Yj,t−1, i 6= j. This model
requires a large number of parameters, hence the
development of GARCH and MGARCH models.

A multivariate ARCH model is required with p lags
and by extension this is given by

Ht = c + A1Yt−1Y
′
t−1 + A2Yt−2Y

′
t−2 +

+ . . . + +ApYt−pY
′
t−p

= c +
p∑

i=1

AiYt−iY
′
t−i (3)

A comparison of equation 3 with 1 shows the two
models are very similar. Setting Φi = Ai and xt−i =
Yt−iY

′
t−i reduces the multivariate ARCH equations to

VAR equations.

With graphical modelling there are fewer parameters
than a multivariate ARCH model and the model can
allow for p lags. The information contained in the
graphical model will be the same as that of the
unconditional ARCH.

Graphical modelling creates a conditional indepen-
dence graph (CIG) on which the edges represent
significant partial correlations. Creating the CIG
requires finding the order of the model, calculating
the partial correlations on a set of admissible edges
and determining which ones have significant partial
correlation values. The optimal graph is found by
removing edges in a stepwise procedure and testing
their removal using an information criterion. Using
a simple rule the causality is time dependant causal
directions can be put on all the edges of the graph to
give a directed acyclic graph (DAG).

The zero partial correlations indicate that the two
variables are independant given all of the other
variables.

In a time series context, variables are each of the series
at time t and the previous p points in time, where p is
the order of the VAR. Admissible edges in a graphical
model are those between the present t and the past t−
1, . . . , t − p. Contemporaneous VAR models require
the addition of edges between each of the variable at
t.

2 BEKK MODEL

Multivariate GARCH models allow the study of not
only volatilities but also covolatilities.

The multivariate GARCH models have the form

at =
√

Ht(θ)εt

where Ht is a positive definite matrix of conditional
variances and co-variances and the random vector εt

is distributed such that E(εt) = 0 and V ar(εt) = I
the identity matrix. The models differ in how they
specify Ht.
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The BEKK-GARCH(1,1) model for takes the form

at =
√

Htεt

Ht = Ω′Ω + A′εt−1ε
′
t−1A + B′Ht−1B

where Ω, A and B are N x N matrices. As N is the
number of indices N = 3.

There are several restrictions on the parameters
required to ensure that Ht is positive definite. For the
GARCH(1,1). (1) prove that Ω is restricted to being
upper triangular with positive diagonal elements and
the first element of the matrices A and B must be
positive. The individual volatility equations hijt are
determined by multiplying the matrices.

Kevin Sheppard has developed MATLAB code to
estimate the MGARCH models (3). The outputs of
interest are the parameter estimates and their standard
errors. These can be used to create a confidence
interval. If this interval contains zero then the
interpretation in this financial integration framework
is that the volatility does not travel through that
passage.

3 RESULTS

The following is the results of fitting a graphical
model and a BEKK model to the three indices. The
squared log returns act as a proxy for the second
moment.

There are few underlying assumptions when fitting a
graphical model. One is that the residuals are white
noise. This differs significantly from GARCH models
were the first moment is said to follow a random
walk and restrictions were placed on the correlation
structure.

The information criterion suggested that the model
order should be p = 3. Therefore a saturated model
for the squared log returns has twelve vertices, and
thirty edges. Each contemporaneous variable is linked
to all of the non-contemporaneous variables and the
three contemporaneous variables are also linked.

The edges which have significant partial correlations
are represented by the graph in Figure 1.

This data has an explicit time structure. Within
any given day the Tokyo stock exchange closes first
then the London stock exchange followed by New
York close. This explicit structure leads to only two
possible subgraphs as shown in Figure 2.

The information citerion suggested the saturated
contemporaneous model fit the data best.

The initial model contains only the edges with

t

Nikkei 225

S & P 500

FTSE 100

t-2t-1
t-3

Figure 1. The CIG for the squared log returns
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Figure 2. The two alternative DAG’s for the
contemporaneous variables

significant partial correlations. A stepwise selection
process removes edges one at a time for the initial
model if the information criterion shows that this
improves the model. Improvement is measured
relative to the saturated model.

The final model is given below in 3.
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Figure 3. The DAG for the squared log returns

The interpretation of this model is complex. For each
series t is effected by t − 2 and t − 3 but not t − 1.
This is unusual behaviour. Usually distant past has a
lesser effect than recent past. The Nikkei 225 effects
the FTSE 100 and the S&P 500. The FTSE 100 also
effects the S&P 500.

The squared return of the FTSE 100 at t−1 effects the
square log returns of both the Nikkei 225 at t while the
S&P 500 at t−1 do not. This implies that the volatility
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channel between London and Tokyo is open in both
directions. The volatility channel between New York
and Tokyo only allows volatility to spillover from the
US to Japan and not the other way around.

The volatility channel between the US and the UK
also is open in both directions. This can be seen
from the contemporaneous relationship between the
two indices and the significant correlation between
S&P 500 at t− 1 and the FTSE 100 at t.

As the underlying multivariate ARCH model is
similar to a VAR the graphical model can be
interpreted in the same way as other graphical models.
The difference is a causal link is called volatility
channel. The model will have the pitfalls of the
multivariate ARCH models in that a larger number of
the lags will often be required. The advantage is the
ability to study relationships between the models in a
causal framework.

(6) studied volatility transmission of real interest rates
in the G7 economies. The approach taken here
extends the pairwise consideration of the interest rates
to three series. A similar methodology of assessing
volatility transmission is applied here to the three
series. ??? re read paper

Inspection of 4 shows that volatility channels are
determined by the elements of the matrix B, the βij’s.
The only β values which differ significantly from zero
are β11, β22 and β33.

Of the three channels the BEKK(1,1) finds to be
active, all of them are yesterday’s volatility of the
index effecting today’s volatility of that index. This
happens for all the indices namely the FTSE 100,
Standard and Poors 500 Composite (S&P 500) and the
Nikkei 225 index.

When comparing the interpretation of the BEKK
model and the graphical model for the squared returns
the concept of marginalisation is required. The BEKK
model used only a single time lag while the graphical
model had three. The graphical model has suggested
a much greater number of volatility channels are
open as the BEKK model found only three volatility
channels Japan-Japan, UK-UK and US-US.

The graphical model found additional channels. If
considering lags 1,2 and 3 past then the volatility
channels are Tokyo-US, Tokyo-UK UK-US, UK-
Tokyo, US-UK, US-US, UK-UK and Tokyo-Tokyo.
The Tokyo-UK relationship only shows up in the
study of contemperaneous relationships.

The Jarque-Bera test was used to assess the residuals
of both models to see if they resembled white noise.
The results show that neither model gives rise to white

noise residuals.

4 CONCLUSIONS

This paper has studied volatility transmission using
Graphical modelling and GARCH models. Compu-
tationally fitting a graphical model to the squared log
returns was the same as fitting any other graphical
model for a vector of time series.

The resulting graphical model was complex and
offered some surprising interpretations. The
association between past volatility and presently
observed volatility of a single series was found to be
from two and three days prior but not a single day
prior. This implies a lag period before the effects of
the past influence the present.

The BEKK model had only the relationship between
t − 1 and t to convey the relationship between the
past and present volatility. This resulted in the BEKK
model forcing information into a single time lag. (2)
discuss this concept.
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