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EXTENDED ABSTRACT 

Graphical models offer a powerful tool for 
studying ecosystem function.  Changes in 
relationships among extrinsic and intrinsic 
biological and environmental variables can be 
explored.  We discuss the application of graphical 
modeling to ecological data and illustrate this with 
an example case study.  Ecological datasets are 
characteristically small with few data points, 
covering only a short period of time, and with high 
seasonal variation.  This high variation, along with 
the fact that the data sets are small, can present 
problems for graphical modeling.  Despite this, in 
general, considerable insight into ecosystem 
function can be gained from the use of graphical 
modeling. 

In our case study we modelled the ecosystem 
relationship between mice and food abundance.  In 
New Zealand cyclical waves in the mice 
population size within beech forest roughly 
correspond to periods after a heavy beech tree 
seeding year.  One explanation for this cycle is that 
years of heavy beech seeding causes an increase in 
mouse population.  Understanding the ecosystem 
relationship will help understand possible causal 
links.  

In this study we used data collected by the 
Orongorongo valley near Wellington between 
August 1971 and November 1996. We used three 
ecosystem measures: mouse population size, 
mouse breeding and seed fall and compared 
graphical models among seasons.   

Mice population size was estimated from counts in 
mice traps adjusted for trapping-effort.  Beech seed 
fall was measured using seed traps under mature 
trees. Mouse breeding was measured by the 
proportion of mice caught in traps that were 
pregnant females and the proportion of adult males 
in the population. 

Direct assessment of seasonal effects on mice-
beech forest ecosystem relationships was by 
comparison among seasonal-models.  Separate 
graphical models were produced, one for each 

leading season: a model with spring as the most 
recent time, a model with autumn as the most 
recent time, and so on.  

The seasonal-graphical models were helpful in 
understanding the relationship among variables.  
The winter observed mouse numbers are 
dependent on the numbers in the previous season, 
autumn, and on levels of seed fall.  Similarly 
summer mouse numbers are dependent on the size 
of the population in the previous season, spring.  
There was no direct link with seed fall as there was 
with the size of the previous winter’s mouse 
population.  The number of mice in spring was 
related to mice numbers in the winter before.  All 
these relationships are positive, i.e., with an 
increase in mouse numbers in winter, mouse 
numbers in spring will increase.  

Graphical models for time series can be used for a 
wide range of environmental studies.  The 
complexity of ecosystem interactions can be 
described by modelling the multivariate system 
with graphical links for the changing interactions 
through time.  Comparison among models for 
different seasons, or for periods pre- and post-
perturbation can be used for quantifying temporal 
change. 
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1. INTRODUCTION 

Graphical modelling for time series is a method 
proposed for the visualisation and casual 
interpretation of time series data (Reale 2001, 
Reale 2002).  Graphical modelling was first 
applied for analysis of medical data (Lauritzen and 
Spiegelhalter 1988). 

There have been few applications of graphical 
modelling to ecological data yet the very nature of 
ecological study suggests that this is a useful 
approach.  Ecological study is characterised by 
complex interactions among many biotic and 
abiotic factors.  Ecology is the study of distribution 
and abundance of organisms and how these 
distributions are affected by their environment.  
Abiotic factors describe the physical environment 
of the habitat, including light, temperature, wind 
etc., and biotic factors describe the intrinsic 
population regulatory factors of the organism and 
of other living organisms. 

The interest in ecological study is often in how 
these biotic and abiotic interactions change over 
time.  Many ecological studies are interested in 
how a particular resource use or human activity 
could effect the environment.  The environment is 
described by a model in some way and the impact 
of a perturbation or gradual change in resource 
availability is then estimated by changing model 
parameters.  Modelling the environment is no 
simple task, given the multiplicity of 
environmental factors and complexity of their 
interactions. 

Graphical models have potential as an analysis tool 
for ecologists for three reasons.  The method 
requires process-complexity to be reduced to a 
visual graphical display thereby giving insight into 
the ecological system.  The identification of causal 
links between events is the essence of ecological 
studies focussed on understanding the processes 
and mechanisms behind an observed data-pattern 
(Greig-Smith 1983).  The third reason is that often 
seasonality in the ecological process adds 
complexity to a standard time series analysis, 
whereas in graphical modelling it can be dealt with 
directly. 

In this paper we discuss the application of 
graphical modelling for time series to ecological 
data.  We briefly describe graphical modelling for 
time series, and then introduce the case study.  We 
discuss our results which were of mixed success, 
and conclude with suggestions for other 
applications. 

2. GRAPHICAL MODELLING FOR TIME 
SERIES 

It is useful to present a brief overview of the 
graphical modelling methods and to introduce 
some terms we use. 

Time series analysis is concerned with modelling 
an observed temporal sequence of data.  The 
extension to multivariate time series is natural 
where now the interest is in the individual series 
and in their interaction with each other.  These 
interactions can be complex. The graphical 
modelling approach can be helpful in 
understanding the complexity. 

The univariate autoregressive model (AR) 
extension to multivariate is the VAR, vector 
autoregressive model.  A structural VAR, sVAR, 
has the form: 
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where Xt is the observed vector of variables in the 
series at time t, α are the model coefficients, and Zt 

is an error term, mean 0 and variance σ2. 

Graphical modelling terminologies are nodes, 
edges, CIGs and DAGs.  In the conditional 
independence graph (CIG) in figure 1 the circles 
are nodes which correspond to model-variables 
and the lines joining the nodes are edges, 
corresponding to the relationship between two 
variables.   

 

Figure 1. An undirected graph with three nodes 
and three edges. 

 

When directions are added to the edges such that a 
cycle is not created the resultant graph is a directed 
acyclic graph (DAG), figure 2.  The nodes with 
outgoing arrows are referred to as parent nodes, 
and child nodes are those with incoming arrows.  

A

C 

B 
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The DAG in figure 2 can be described by a system 
of equations relating one variable to others: 
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Figure 2. A directed graph with the node B being 
the parent of both nodes A and C.  Node A has two 

parent nodes, B and C. 

In the CIG derived from a DAG edges are drawn 
between nodes that are conditionally dependent.  
The CIG associated with the DAG in figure 2 has a 
link between B and C to describe the B-C 
relationship conditional on the three variables of 
the graph.  The term ‘moralisation’ is used to 
describe the process of ensuring conditional 
dependence, by adding links in a CIG that has been 
created from a DAG.  The DAG in figure 3 would 
result in the same figure 1 CIG as the DAG in 
figure 2, because there must be a moral link 
between B and C.  

 

Figure 3. A directed graph with the node B being 
the parent of only node A.  This DAG is different 

from figure 2, but both lead to the same CIG, 
figure 1. 

Moving from a DAG to a CIG can be 
straightforward because there can be only one CIG 
for each DAG.  Moving from a CIG to a DAG 
requires adding directional edges to indicate the 
movement of time, and is not straightforward.  
Both DAG’s shown (figure 2 and 3) can produce 
the same CIG (figure 1). In fact there are more 

than two possible DAG’s for the figure 1 CIG, the 
DAG in figure 4 would also produce the figure 1 
CIG. 

 

Figure 4. Yet another directed graph.  This DAG is 
different from figure 2 (and figure 3), but would 

also lead to the same CIG, figure 1. 

In creating a DAG from a CIG which direction to 
add the arrows can be obvious in some 
applications.  When two nodes occur at the same 
time (contemporaneously) then it is not so 
obvious.  Consider figure 2 and 4, B and C both 
occur before A but occur at the same time.  Which 
direction should the arrow between B and C be, or 
should there even be an arrow between B and C 
(figure 3)?  

Graphical modelling for time series (Reale 2001) 
is a three step process: creation of a CIG, creation 
of the equivalent DAG, and in step three, 
regression modelling and model selection.  This 
third step is the process of selecting between 
competing DAG’s. 

In the graphs the time series of variables are lined 
up so that the most recent observation, t, is on the 
left (Figure 5).  The directional arrows are used to 
specify a system of equations specified for each 
possible DAG.  Model selection criteria, such as 
AIC (Burnham and Anderson 1998) are used to 
define the appropriate model. 

Figure 5. A graphical modelling for time series 
where all arrows are in the direct of time t. 
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The system of equations for the graphical model 
shown in figure 5 would be: 
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Selecting the appropriate DAG with directional 
links places graphical models in the realm of 
addressing causality (Granger 1988, Pearl 2000).  
The system of equations used to describe the figure 
2 DAG are appropriate for describing causality, 
even if the second equation is redundant 
mathematically. 

3. CASE STUDY: MICE AND BEECH 
SEEDING 

Cyclical waves in size of ecological populations 
have been observed in many habitats. Probably the 
best known is the lynx and snow shoe hare where 
peaks in one species’ population size are followed 
by peaks for the other species.  As the snow shoe 
hare population increases the predator species, the 
lynx, builds up in size.  The hare population 
crashes followed by the lynx population crashing 
as their food declines.  In the absence of predators 
the hare population rises, and so on. 

A similar system has been observed in New 
Zealand with cyclical rises in the mice population 
size roughly corresponding to a period after a 
heavy beech tree seeding year. These years of 
heavy seeding are called beech-mast years.  One 
explanation for this cycle is that beech seed 
masting causing an increase in mouse population, 
whereas an alternative view is that the increased 
flowering and seed fall cause an increase in 
invertebrate and it is this increase in invertebrate 
population size that causes the mice population 
size increases.  The question is therefore related to 
causality – what causes what?   

3.1. Data collection 

Data on mice numbers, beech seed fall and mouse 
breeding were collected from the Orongorongo 
valley near Wellington between August 1971 and 
November 1996 by staff from the former DSIR 
and more recently, Landcare Research (M. 
Fitzgerald and B. Karl). 

Mice population size was estimated from counts in 
mice traps adjusted for trapping-effort: 
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Where a0 is the number of traps not sprung, a1 is 
the number of traps sprung but empty, or 
containing another species and hence not available 
to catch mice, and a2  is the number of traps with a 
mouse, and T = a0 + a1 + a2 (Fitzgerald et al. 
2004). 

Beech seed fall was measured using seed traps 
under mature trees. The size of the traps was 
0.28m2.  Traps were cleared monthly but data was 
available only from annual records. 

Mouse breeding was measured by the proportion 
of mice caught in traps that were pregnant females 
and the proportion of adult males in the 
population.  Adulthood was assessed by toothwear 
and any mouse over 4 months old was considered 
an adult.  All trapped mice were dissected and 
pregnancy assessed by the presence of either live 
or reabsorbing embryos in utero.  

These data represented measurements from a 
system with strong seasonal differences both from 
intrinsic ecological reasons, and for other response 
variables, because data were only collected in 
some seasons.  Mice were trapped four times a 
year (February, May, August and November) 
giving four estimates of mice numbers per year, 
roughly one estimate per season.  Seed fall 
occurred in February through to May but only one 
estimate per year was available which was 
considered to be from the summer season.  Mouse 
breeding occurs in both spring and summer, but is 
absent in the other two season.  This strong 
seasonality can be a challenge for modelling.   

Collecting ecological is very expensive and there 
are very few examples in New Zealand of long 
term studies were data has been collected with 
some consistency over more than 5 years. Even 
with longer term studies, the data collection 
techniques do evolve resulting in a subtle shift in 
what the sample estimate is measuring.  In this 
study the there was a noticeable change in the data 
from mice traps after 1993 coinciding with a 
change in the field team personal.  The difference 
was so large we used data from only up to 1993.   

Because of the expense in collecting ecological 
data surveys tend to have multiple objectives and 
this can compromise the quality of data.  In this 
mouse study estimating mice population size was 
only one objective and the need for quality and 
consistent data on mice numbers, beech seeding 
and mice breeding would have been competing 
with the need to collect information on other 
ecological variables.  Over time the survey 
objectives change and allocation of effort and data 
collection methods evolve.  Comparison of data 
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trends over a long time span can be confounded by 
changes in data collection protocols.  It will take 
many more years of study to address the 
competing hypothesis that mice numbers are 
directly relate to invertebrates rather than beech 
seeding because invertebrate data was not 
collected in the past – there so no compelling 
reason at the time to collect it. 

Analysis of ecological data is also constrained in 
that ecological events can be infrequent.  Beech 
masting occurs once every 4 – 7 years.  In this 
study despite the considerable effort undertaken to 
collect this data over years beech masting, 
occurred only six times.   

4. METHODS 

Initial modelling used a simple GMTS approach 
with the seasonal variables Xt = mouse numbers, Yt 
= seed fall and Zt = mouse breeding .  However the 
results were less than satisfactory.  There were 
data from seasonal counts of mouse numbers, 
whereas for the seed fall there was only annual 
data.  One approach to deal with the differences in 
temporal scale of the time series is to create 
synthetic values for seasonal series based on the 
annual responses. Data on annual seed fall for 
example could be used to model seasonal seed fall.  
However to be ecologically realistic the seasonal 
values for seed fall were set as 0 for seasons other 
than summer. An alternative would have been to 
model the data on an annual scale.  The obvious 
problem here is that information on seasonal 
variation, where available, is lost. 

For mouse breeding data were available only on an 
annual scale, but breeding occurs over two 
seasons.  For this time series the annual breeding 
value was split between the two seasons, spring 
and summer.  A random value from a uniform 
distribution with mean 0.5 and range (0.1) was 
used to estimate p, the proportion of the annual 
breeding that occurred in spring.  The proportion 
of the breeding that occurred in summer was 
estimated by 1-p. 

To ensure the modelling was ecologically realistic 
seasonality was preserves in the graphical 
modelling. Separate graphical models were 
produced, one for each leading season: a model 
with data from annual spring as the most recent 
time, a model with autumn as the most recent time, 
and so on. 

5. RESULTS 

The seasonal-graphical models are informative in 
understanding the relationship among variables 

(figure 5).  In all three seasons modelled the size of 
the mouse population was related to the size of the 
population in the previous season.  The effect of 
summer seed fall was only evident in the following 
winters’ mouse numbers and there was no 
carryover effect to the following spring.  The size 
of the winter mouse population had an effect on 
the summer’s breeding population. 

In summary, summer mouse numbers were 
dependent on the size of the population in the 
spring, while summer breeding was dependent on 
the previous winter’s population size.  And 
springs’ mouse numbers were a function of the 
mice numbers in the winter before.  The autumn 
model provided no useful information. 

All these relationships were positive, i.e., with an 
increase in mouse numbers in winter, mouse 
numbers in spring will increase.  With an increase 
in summer seed fall there is a corresponding 
increase in mouse numbers in winter. 

 

Figure 5 Seasonal graphical models, Xt = mouse 
numbers, Yt = seed fall and Zt = mouse breeding.  

The numbers on the arrows are parameter values in 
the linear model 

Perhaps the most interesting features are the 
graphs are the missing links indicating lack of 
evidence of a relationship.  Mouse breeding was 
not related to previous seed fall, although mouse 
numbers were.  Only in winter were mouse 
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numbers related to breeding (in summer).  The 
only relationship with summer seed fall was with 
mouse numbers in winter.  Increased mouse 
numbers in winter was associated with increased 
breeding in the next summer, but the link between 
summer seed fall and summer breeding, was not 
direct. 

6. DISCUSSION 

Graphical modelling of time series data is a useful 
tool for biologists.  The complexity of ecosystem 
interactions can be described by modelling the 
multivariate system with graphical links for the 
changing interactions through time. 

In this case study example, results were 
constrained by the size of the dataset and 
consistency of the data collection procedure (see 
earlier discussion in 3.1). Our seasonal models 
were derived from data there were strictly not 
collected seasonally and we had to derive seasonal 
mouse breeding estimates.  The analysis was 
limited to pre-1993 data because of changes in 
survey protocol.  While we did create three 
seasonal models, the results were not outstanding.  
Perhaps what is most relevant is that these data 
were from one of New Zealand’s longest term 
ecological studies and it is a reminder of the high 
cost of environmental data collection.  Rather than 
dismissing the dataset as being too small, or 
inferior in some way, appropriate analysis methods 
need to be developed. 

The primary advantage of using graphical models 
for ecology is the visual display of the ecosystem 
relationships.  The identification of the temporal 
variables, and the resultant graph can be a very 
informative data-display.  The process of creating 
the CIG and the DAG and the resultant graphical 
model quantifies the variable relationships.  
Inference to causal relationships is a productive  
step for conservation management.  For example, 
quantifying the time lag between an observed 
increase in seed fall and in mouse numbers would 
allow managers to target the optimal timing for a 
mouse-control operation.  Identifying whether the 
link between seed fall and mouse numbers is direct 
and causal would allow managers to measure 
appropriate environmental indicators of potential 
mouse population size increases, well before the 
increase occurred.  

In this case study there were insufficient data to 
directly model the effect of inter-annual variation 
in seed fall and the specific effect of beech mast 
years.  With more data, variation in graphical 
models in the periods before, and after a 
perturbation (such as beech mast year) could be 

used to measure the effect of the change.  
Questions on the temporal “effect” of mast years 
can be addressed by measuring how long it takes 
for the system to return to pre-perturbation state. 
The graphical modelling for time series framework 
is adaptable to assist in analysis of a wide range of 
environmental research studies. 
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