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EXTENDED ABSTRACT

The 1994 water reforms of the Council of Aus-
tralian Governments (COAG) were the very sig-
nificant changes in Australia’s water resource
management practice. The COAG reforms were
an integrated package of changes aimed at im-
proving both the efficiency of water use and the
condition of Australia’s waterways. The major
change associated to these reforms was the sep-
aration of land and water rights of the owners
and the ability to trade these rights separately,
subject to ecological, social and financial con-
straints.
It is hoped that these water market reforms will
bring the economics of the agricultural to the
situation where all parties are better off: farm-
ers can sell their water rights for their real cost
and the water allocation in general shall be-
come more efficient. However, some negative
impacts are possible. For instance, will the shift
of water rights from the region of lower return
to the regions with more profitable industries
create the situation when the first region has
not enough funds to support the regional water
supply infrastructure causing a series of unfor-
tunate social and economic consequences? If
water rights are transferred from the predom-
inantly grazing land and pastures of northern
Victoria (the Goulburn catchment) to the hor-
ticultural region of Sunrasia and the wine pro-
ducing regions of South Australia, the first re-
gion would not be able to maintain the system
of reservoirs and water carrier channels impact-
ing negatively on tourism, regional income and
employment opportunities in the region. For
better prediction of consequences of these re-
forms, economic modelling is necessary. The
computable (CGE) is one of the most power-
ful tools allowing researchers to deal with this
problem.
In the household consumption formulations of
CGE modelling a utility function is usually se-
lected a priori without taking into consideration
the detailed structure of preferences for goods

and services. The most commonly used func-
tional forms are the Cobb-Douglas and CES
utility functions. Only relative few parameters
of these functions are estimated using the real
data on consumer preferences, raising questions
as to their representativeness. This paper out-
lines a method via which a purpose built utility
function is derived based on real consumer de-
mand data. The method best fits a utility from
the class studied by (Afriat, 1967) and is based
on revealed preference theory. Such methods
can only work exactly if the Generalised Axiom
of Revealed Preference (GARP) holds (Fostel,
2004). Consequently a non-liner best fit opti-
misation algorithm is devised to find the min-
imum residuals that allow the GARP to hold
and hence an Afriat like utility to be fitted.
All CGE algorithms are based on a best esti-
mate of the current state of the economy pro-
vided by the input-output table. These values
maximise the underlying (real) utility subject
to the budget constraint. Thus we impose ad-
ditional constraints to ensure the equilibrium of
the fitted utility exists and coincides with the
entries in the input-output tables. Thus we ar-
rive at a mathematical program with equilib-
rium constraints (MPEC), the equilibrium con-
straints being those associated with the implicit
utility maximization problem, tied to the input-
output tables estimates. It is well known that
MPECs are more difficult to solve than a stan-
dard nonlinear optimization problems, often re-
quiring purpose built solvers. In this paper we
utilise a mathematical method that allows us to
formulate and solve our MPEC as a standard
nonlinear programming problem for small data
sets.

The goal of this research is to provide a tech-
nique to allow researchers to more accurately
estimate the cross-elasticities of all commodities
included in the modelling. Its intended that the
derived utility function will be used to update
the current regional CGE model with a view to
achieve more accurate realistic predictions.
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1 INTRODUCTION

1 Background

The traditional approach to the agricultural
market modelling is based on the LP optimi-
sation technique, where the revenue of the re-
gional economy or individual irrigator is max-
imised subject to the availability of a set of lim-
ited resources (land, water, capital, labour etc.)
Several economic models have been developed
in order to predict volumes and prices of water
traded. An overview of such modelling can be
found in (Schreider et al. 2005); (Weinmann
et al., 2005). The most commonly used model
the Australian water market were suggested in
works of economists from the Victorian Depart-
ment of Primary Industry (Eigenraam, 1999)
and the Australian Bureau of Resource Eco-
nomics (McClintock et al.,2000).
The major limitation of the linear optimisa-
tion models is that they treat the economic
process from the partial equilibrium point of
view where the prices for the most part of com-
modities are given exogenously. The applica-
tion of computable general equilibrium models
(CGE) is a step ahead compared to the partial
equilibrium paradigm. CGE models are widely
used in Australia (see for instance, Dixon et al.,
1982) and world-wide (Ginsburgh and Keyser,
1997). Derivation of the demand functions for
each commodity and a primary factor is a cen-
tral part of any computable general equilibrium
(CGE) modelling work.
Traditionally, the formulation of the consumer
problem for the CGE model postulates that
the explicit form of the utility function is given
a priori as some generalisations of the Cobb-
Douglas utility functions, demonstrating the
constant return to scale, constant elasticity of
substitution and constant ratio of elasticities of
substitution.

2 Rationales

In this work we apply techniques from general-
ized convexity, monotonicity and optimisation
to the estimation of the utility functions that
are used in the CGE modelling of water mar-
ket and in the agricultural economics. Such es-
timation techniques will have significant value
when applied to recently developed mathemati-
cal models of the agricultural economy of north-
ern Victoria. Apart from the pure academic
value of the results obtained we expect to im-
prove on the classical CGE economic modelling
used to explain and predict water market trans-
actions. Another important rationale of the im-
plemented work is that it allows researchers and
water authorities to better understand other

socio-economical processes which cannot be de-
scribed within the classical CGE paradigm. The
results obtained form this research project could
be used for natural resource management pur-
poses by relevant state authorities for different
economic regions, for instance in the regions
of irrigated agriculture as the Goulburn catch-
ment, and all around Australia.

3 First pass approach

A central part of any computable general equi-
librium (CGE) modelling work is determina-
tion of a consumer demand function. This
function should be derived for each commod-
ity and primary factor constituting the mod-
elling system. This problem is usually solved as
a Lagrangian formulation when a utility func-
tion is maximised for a given budget constraint.
The maximization of the utility function sub-
ject to budget constraints will remain the pri-
mary framework but will now provide the up-
per level part of a bi-level optimization prob-
lem. The lower level corresponding a best fit
for the utility functions subject to available re-
vealed preference data. This later problem can
be treated as a member of the family of Math-
ematical Programming with Equilibrium Con-
straints (MPECs).
The Lagrangian technique will not be available
since the lower level problem (the best fit utility
problem) will only give the utility function indi-
rectly as the solution of an optimization prob-
lem. The fitted utility being of the Afriat class
is piecewise affine giving rise to a linear pro-
gram utility maximization problem in the upper
level. When we try and fit a concave function
to a set of data we need the imposition of addi-
tional constraints to select from the equivalence
class of utility functions “consistent” with the
data. Also when a non-market variable exists
it is useful to first fit the indirect utility to the
data and infer the direct utility subsequently.
Such considerations lead one to consider maxi-
mal and minimal representatives of this equiva-
lence class.
This paper reports the first stage of the project
where we use artificially simulated bundles of
commodities taken from a known utility in or-
der to test our best fit approximation algo-
rithm. Two utility functions, Cobb-Douglas
and Constant Elasticity of substitution (CES)
were selected as these are commonly used in
CGE modelling. The Cobb-Douglas utility is
defined as U(Xi, ..., Xn) =

∏n
i=1 Xi

αi , where∑
i αi = 1. This function represents the de-

mand of commodities with respect to commod-
ity costs and household income. Where α rep-
resents the commodity share of good i in the
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total household expenditure. A larger value of
α implies that the commodity holds a greater
sales share. Commodity demand of i will de-
crease with cost increase of commodity i or de-
crease in household income. Price elasticity of
demand is unitary, therefore a 10% increase in
price will lead to a 10% decrease in demand.
Cross-price elasticity for this case is zero, hence
the demand of one commodity is not depen-
dent on the other. The CES utility function is
defined as U(Xi, ..., Xn) =

(∑n
i=1 αiXi

−ρ
)− 1

ρ ,
where ρ = 1−s

s (s > 0, s 6= 1). Commodities
are considered to be: 1). Unitary Elastic: If as
s → 1the CES function behaves like the Cobb-
Douglas function. 2). Perfect Complements:
As s → 0 the CES approaches the Leontief func-
tion where commodities are consumed jointly to
satisfy the consumer. Hence price elasticity of
demand is inelastic as a consumer will not give
up more of one commodity for the other. 3).
Perfect Substitutes: As s →∞ both goods can
be substituted whilst still achieving maximum
utility. This displays price elastic demand. The
algorithm used in the approximation is detailed
in Section 2 of this paper.

2 METHOD

A utility function u : <n
+ → < is often used

to reflects the preference structure with respect
to possible consumption. It is well known that
under minimal assumptions we can define a
consumer preference yRx via a utility using
y ∈ Su(x) := {z ∈ K | u(z) ≥ u(x)}. It is natu-
ral to assume u is non-decreasing on it domain
<n

+ of positive commodity bundles and nonsa-
tiated (i.e. “no flats”). A preference R induces
a demand relation DR in that (x, x∗) ∈ DR if
and only if we are within budget x ∈ BG(x∗) :=
{y ≥ 0 | 〈y, x∗〉 := y1x

∗
1 + · · ·+ ynx∗n ≤ 1} and

xRy for all y ∈ BG(x∗) (we have rescaled
the unit of money so that the budget w =
1). This amounts to the solution of the fol-
lowing optimization problem (parameterised by
x∗) v (x∗) := max {u (x) | 〈y, x∗〉 ≤ 1}, which
defines the so called indirect utility v. Un-
der mild assumptions we may recover the di-
rect utility via the duality formula u(x) =
inf {v(x∗) | 〈x, x∗〉 ≤ 1}.
In consumer preference theory we have only
access to finite sample of such pairs X :=
{(xi, x

∗
i ) ∈ DR, i ∈ I} where I := {1, . . . ,m}.

We say that x is a revealed preference to y when
(x, x∗) ∈ DR and 〈x∗, x − y〉 ≥ 0n denoting
this by x ºDR y. That is, y was in budget as
〈x∗, x〉 ≥ 〈x∗, y〉 but as (x, x∗) ∈ DR we have
x chosen instead of y. Such a finite expendi-
ture configuration, X gives rise to a partial or-
der ºRvia the transitive closure of ºDRwhere

x ºR y when there exists x = x0, x1, . . . , xn = y
with xi+1 ºDR xi for all i. Similarly we de-
note x ÂR y when x ºR y and there exists i
with xi+1 ÂDR xi or 〈x∗i+1, xi+1 − xi〉 > 0 for
(xi, x

∗
i ) ∈ DR. The generalised axiom of re-

vealed preference (GARP) says that there can
not exists a cycle {(xi, x

∗
i ) | i = 0, . . . , n} (with

x0 = xn+1) such that all 〈x∗i+1, xi+1 − xi〉 ≥ 0
unless 〈x∗i+1, xi+1− xi〉 = 0. The GARP is nec-
essary and sufficient for the existence of a pref-
erence order º on X such that x º y whenever
x ºR y and x Â y whenever x ÂR y. That is
ºR rationalises X . The fundamental problem
of consumer preference theory is the question
as to how to fit an unknown utility u given only
a finite expenditure configuration, X .
This brings us to the classical work of (Afriat,
1967) and (Fostel, 2004). Under the assumption
of the GARP there is a feasible solution to the
”Afriat” inequalities

φj ≤ φi + λi〈x∗i , xj − xi〉 for i, j ∈ I. (1)

When we have such a solution we may then de-
fine a concave utility via

u− (x) := min {φ1 + λ1〈x∗i , x− x1〉, . . .
. . . , φm + λm〈x∗m, x− xm〉}

with the properties: 1). u (xj) = φi for j ∈ I
since by definition and the Afriat inequalities

u− (xj) = min {φ1 + λ1〈x∗i , xj − x1〉, . . .
. . . , φm + λm〈x∗m, xj − xm〉}

= φj + λj〈x∗j , xj − xj〉 = φj .

2). If x is within budget for price x∗i but is not
preferred to the “revealed preference” xj i.e.

〈x∗j , x〉 ≤ 〈x∗j , xj〉( = 1) ⇒ u− (x) ≤ u− (xj)

since u (x) ≤ φj + λj〈x∗j , x− xj〉 ≤ φj = u− (xj) .

3). Also

u− (x)− u− (xi) ≤ φi + λi〈x∗i , x− xi〉 − φi

= 〈λix
∗
i , x− xi〉

or equivalently λix
∗
i ∈ ∂ (−u−) (xi).

What happened when there are errors and the
GARP does not hold? We assume the error in
GARP is due to inaccurate values of {xi}i∈I

then we need to introduce errors {si}i∈I and
move xi to xi + si (but enforce s0 = 0) and
consider:

min
(φ,λ,s)

∑

i∈I, i 6=0

|si|2

subject to
φj − φi ≤ λi [〈x∗i , xj − xi〉+ 〈x∗i , sj − si〉]

for i, j ∈ I and for all i, λi ≥ 1.
(2)
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and placing u− (x) = min {φi + λi〈x∗i , x− xi − si〉}
for all x.
In practise economist have merged a set of data{
(xi, x

∗
i )
∗}

i∈I
into a one estimate of the true

equilibrium state of the system (x0, x
∗
0). Thus

we require (x0, x
∗
0) to be a solution of the op-

timization problem. Let w denote the budget
then

max
x

t

Subject to u− (x) ≥ t and 〈x, x∗0〉 = w

This has a Lagrangian

L (x, η0, η) := t− η0 (〈x, x∗0〉 − w)

−
∑

i

ηi (t− φi − λi〈x∗i , x− xi − si〉)

which gives rise to the optimality conditions (re-
placing ηi ← ηi/η0 so that

∑m
i=1 ηi = 1/η0 > 0

assuming 〈x, x∗0〉 = w)

x∗0 =
∑

i

ηiλix
∗
i with ηi ≥ 0

0 ≥ t− φi − λi〈x∗i , x− xi − si〉 ,
and ηi (t− φi − λi〈x∗i , x− xi − si〉) = 0.

Including this into the utility fitting problem
(assuming 〈x0, x

∗
0〉 = w) we arrive at the opti-

mization problem

min
(φ,λ,s,t,η)

∑

i∈I, i 6=0

|si|2 (U-MPEC)

subject to
φj − φi ≤ λi [〈x∗i , xj − xi〉+ 〈x∗i , sj − si〉]

for i, j ∈ I, x∗0 =
∑

i

ηiλix
∗
i with

κi = λi〈x∗i , x0 − xi − si〉 − t + φi,
λi ≥ 1, ηi ≥ 0 and κi ≥ 0

and ηiκi = 0 for all i

which is a mathematical program with equi-
librium constraints (MPEC). One may easily
change the norm used in the objective substitut-
ing it with the one norm (the sum of modulus)
or the infinity norm (the maximum of modulus)
i.e. ∑

i∈I, i 6=0

|si| or max
i=1,...,m

|si|.

This may improve performance in the presence
of outliers.
Usually such problem need purpose built solvers
but by relaxing the equilibrium constraint
ηiκi = 0 to ηiκi ≤ 0 in conjunction with ηi ≥ 0
and κi ≥ 0 we obtain an equivalent formula-
tion to which the standard sequential quadratic
programming problem is applicable when sam-
ple size m are less than 25. If one tries fits

the indirect utility −v to the inverted data
X T := {(x∗i , xi) | (xi, x

∗
i ) ∈ X} one obtains

v+ and by association u+ (x) := (v+)∗ (x) =
infx∗ {〈x, x∗〉 − v+ (x∗)} which can be shown to
be the largest concave utility consistent with X
while u− is the smallest.

3 RESULTS

1 Cobb-Douglas Utility

Random price data was generated for 20 sam-
ples of commodity bundles of size 2. The de-
mand data was obtained for both commodities
by maximising the Cobb-Douglas utility func-
tion subject to the pricing constraint. The first
pricing samples give X1 and X2 as 0.8 and 0.6
respectively where this represents the system at
equilibrium. Small randomness in the demand
data was added to each commodity demand as
to model small “hiccup” in the system or pos-
sible errors in the data gathering process. In
all simulations we do not perturb the first data
value as this represents the true state of the
system and this value has been circled in blue
in our plots. The parameter α was varied to
demonstrate uniform shares, biased shares to-
wards commodity X1 and strongly biased shares
towards commodity X1.
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Figure 1. Equal shares of commodities X1

and X2 with α = 0.50.

The level curves show indifference towards com-
modity bundles and it can be concluded that the
consumers satisfaction will be reached by any
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choice made along the level curve. A consumer
will always choose to maximise utility therefore
a commodity bundle that sits on the upmost
level curve that intersects the budget constraint
will always be chosen. For the 20 samples cho-
sen a combined value of commodities 1 and 2 are
consumed to maximise consumer utility based
on the pricing bundle.

In Figure 1 a uniform distribution of household
shares of commodities 1 and 2 is displayed. The
“true” optimal value (X1, X2) = (0.8, 0.6) is
contained in the blue circle. The U-MPEC util-
ity gives a similar curve to the Cobb-Douglas
where the data is more congested. As the data
disperses the utility approximation flattens out.
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Figure 2. Biased shares of commodity X1

with α1 = 0.67 and α2 = 0.33.

In Figure 2 demand with a biased towards com-
modity X1 has shifted data so that utility is
maximised for larger quantities of commodity
X1 with less of commodity X2 consumed. The
“true” optimal value (X1, X2) = (1.1, 0.4) is
contained in the blue circle. Level curves in
both graphs decline more steeply to accom-
modate the shift in demand. The utility ap-
proximation is comparing well with the Cobb-
Douglas utility.

In Figure 3 strong biasedness of commodity X1

has dramatically shifted the data toward larger
amounts of X1 consumed to very little of X2.
The “true” optimal value (X1, X2) = (1.3, 0.25)
is contained in the blue circle. Again the level
curves in both graphs decline more steeply to
accommodate the shift in demand with the

utility approximation representing the Cobb-
Douglas utility very well.
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Figure 3. Strongly biased shares of
commodity X1 with α1 = 0.80

and α2 = 0.20.

2 CES Utility

The CES utility function was used to calculate
demand based on the same price data used in
the Cobb-Douglas utility problem.
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Figure 4. Typical CES curve with s = 1.1
and α = 0.50.
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Typically s is chosen to be 1.1 as it closely
represents the Cobb-Douglas utility function
with slightly greater price elasticity of demand.
Hence a 10% increase in price will lead to a 11%
decrease in demand. In Figure 4 the CES util-
ity approaches unitary elasticity as the value
of s is close to 1. The “true” optimal value
(X1, X2) = (0.8, 0.6) is contained in the blue
circle.The U-MPEC has compares well with the
level curves of the CES utility around the region
of the data set but the approximation appears
to degrade as we move away from the region
within which the simulated data falls.
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Figure 5. Leontief type curve with s = 0.1
and α = 0.50.

In Figure 5 the commodities are treated are
perfect substitutes hence the level curves are L
shaped and data points are bundled together
at the base of the curve. The consumer will
only increase utility if they can increase both
commodities jointly. The U-MPEC has also ad-
justed the shape of level curves to fit the given
data. Noting the outlier in the data has oc-
curred due to small price data being generated
for both commodities X1,X2 hence allowing the
consumer to increase buying power. The “true”
optimal value (X1, X2) = (0.8, 0.6) is contained
in the blue circle. Again the approximation is
good close to the cluster of simulated data val-
ues but degrades as we move far away from these
values.

4 DISCUSSION AND CONCLUSION

Consumers try to maximise their utility (satis-
faction) level given a budget constraint. How-

ever, generalised utility functions like the Cobb-
Douglas and the CES studied in this paper force
the demand data to fit the desired curve based
on preconceptions of consumer choices. Incon-
sistences in consumer choices and randomness in
commodity selection are not considered. Data
is only used from the Input-Output table to cal-
culate share values of commodities. In this case
the household share value was calculated as the
amount of a commodity used with respect to
total household spending.

The U-MPEC formulated has allowed the user
to fit the function to given data using the 2 norm
without constraining consumer choices to given
demand functions. It is unrealistic to assume
that all consumers demand follows a Cobb-
Douglas unitary price elasticity of demand when
many consumer choices are much more complex.
In the case of perfect substitutes, consumers are
represented as being indifferent to the choice of
a commodity provided they are similar. Many
examples given in text books describe Coca-
Cola and Pepsi as perfect substitutes. Suppos-
edly consumers are indifferent to the choice be-
tween the two commodities provided the price
is within budget.

The small, artificially generated samples have
been used to demonstrated the ability of the U-
MPEC utility function to fit two commonly used
utility functions. Qualitatively the U-MPEC
utility compares surprisingly well to these given
utility functions, considering that such a small
sample size was used. This is particular true for
the Cobb–Douglas utility. For the CES utility
the approximates appears to be best within the
region that the data is clustered. It is conjec-
tured that the good quality of the U-MPEC ap-
proximation is due to the highly constrained na-
ture of the MPEC optimisation problem. Thus
small amounts of data appear to be sufficient to
replicate some of the general utility functions
commonly used although further studies will be
need to confirm this beyond reasonable doubt.
Further studies in substituting the norm used
in the objective function to the 1 or infinity
norm will determine whether in fact it may im-
prove performance in the presence of outliers. It
would be desirable to develop a statistical the-
ory to estimate errors that result from the prop-
agation of random fluctuations in data values to
our utility approximation.

Due to the inability to apply standard optimiza-
tion algorithms to solve the U-MPEC problem
for larger samples, the next step is to develop a
purpose built solver for larger data sets. This
will be important to further test our approxima-
tion method and important in order to apply
this method to the regional CGE model. We
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may then test if this method allows more accu-
rate modelling of consumer demand.
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