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EXTENDED ABSTRACT

This paper considers the seemingly unrelated regres-
sion (SUR) model with spatial dependencies from
a Bayesian point of view. We consider Markov
chain Monte Carlo (MCMC) methods to estimate the
parameters of the models. We analyze the economics
of agglomeration in Japanese prefecture during the
period 1991 to 2000. From our empirical results, we
found that the spatial error SUR model was the best
model and that the economics of agglomeration and
spill-over effects decreased in this decade.

Panel spatial data has been widely used in geograph-
ical statistics, regional science and so on. Although
the analysis of panel spatial data is popular in several
research areas, panel spatial models have been rarely
examined in econometrics. One of the reasons may
be the difficulties of evaluating the likelihoods of the
models. However, because of the progress of the
Markov chain Monte Carlo (MCMC) methods (see,
e.g., Chib, 2001 and Gamerman and Lopes, 2006
for recent advances of MCMC methods), it becomes
easier to estimate the parameters of such models.
For example, Kakamu et al. (2007) examined the
spatial interaction of crime incidents in Japan using
non-hierarchical panel spatial autoregressive model
with heteroscedasticity and Kakamu and Wago (2007)
showed the advantage of Bayesian panel spatial
autoregressive model with hierarchical priors.

According to Anselin (1988), it is stated that
the seemingly unrelated regression (SUR) model
proposed by Zellner (1962) is applicable to panel data
model. The advantage of the SUR model in panel
models is in time varying parameters. If researchers
are interested in the dynamics of the parameters, the
SUR model is useful. Therefore, Anselin (1988)
proposed the maximum likelihood method to estimate
the model. However, as is pointed out by Kakamu
and Wago (2007), the maximum likelihood methods
involve the restriction problem of spatial parameters
and Kakamu and Wago (2007) showed that the
Bayesian method can avoid the problem.

From a Bayesian point of view, Zellner (1971) and
Box and Tiao (1973) studied the model and Percy
(1992) and Koop (2003) examined the Markov chain
Monte Carlo (MCMC) methods to estimate the model.
Chib and Greenberg (1995) extended the model with
vector autoregressive and vector moving average
errors of the first order. Thus, we propose a Bayesian
approach for the estimation of the models (spatial
autoregressive and spatial error models) using MCMC
methods. We also introduce the marginal likelihood
to compare the models with and without spatial
interaction. Moreover, our approach is illustrated by
real data set. In the real data example, we examined
the economics of agglomeration with and without
interregional spill-overs by panel data during the
periods 1991 to 2000, which is called “lost decade”.

From the results, we found that the SEM-SUR model
is the best model and serial correlation played an
important role. In addition, following tendencies are
confirmed: (1) Average TFP is the source of economic
growth in Japanese manufacturing industries in this
decade. (2) Manufacturing industries in Japan
became more labor intensive. (3) The economics of
agglomeration and spill-over effects became smaller
over time and spill-over effect vanished in 1993.

Finally, we will mention about the remaining issues.
As is pointed out above, the result that the Japanese
manufacturing industries became labor intensive
seems to be different from the situation in this decade
in Japan. We cannot conclude what happened to
the Japanese manufacturing industries in this decade
only from our empirical results. However, it beyonds
our analysis and it requires other moderate model
or theory, like human capital theory. Moreover,
we mentioned that the serial correlation plays an
important role in this model. If we extend the model
by Chib and Greenberg (1995) to spatial model, the
serial correlation may become small. However, as
our main purpose is to examine the SUR model with
spatial dependencies, it also beyond our analysis,
but our findings from Japanese cases represent an
interesting firs step.
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1 INTRODUCTION

Panel spatial data has been widely used in geograph-
ical statistics, regional science and so on. Although
the analysis of panel spatial data is popular in several
research areas, panel spatial models have been rarely
examined in econometrics. One of the reasons may
be the difficulties of evaluating the likelihoods of the
models. However, because of the progress of the
Markov chain Monte Carlo (MCMC) methods (see,
e.g., Chib, 2001 and Gamerman and Lopes, 2006
for recent advances of MCMC methods), it becomes
easier to estimate the parameters of such models.
For example, Kakamu et al. (2007) examined the
spatial interaction of crime incidents in Japan using
non-hierarchical panel spatial autoregressive model
with heteroscedasticity and Kakamu and Wago (2007)
showed the advantage of Bayesian panel spatial
autoregressive model with hierarchical priors.

According to Anselin (1988), it is stated that
the seemingly unrelated regression (SUR) model
proposed by Zellner (1962) is applicable to panel data
model. The advantage of the SUR model in panel
models is in time varying parameters. If researchers
are interested in the dynamics of the parameters, the
SUR model is useful. Therefore, Anselin (1988)
proposed the maximum likelihood method to estimate
the model. However, as is pointed out by Kakamu
and Wago (2007), the maximum likelihood methods
involve the restriction problem of spatial parameters
and Kakamu and Wago (2007) showed that the
Bayesian method can avoid the problem.

From a Bayesian point of view, Zellner (1971) and
Box and Tiao (1973) studied the model and Percy
(1992) and Koop (2003) examined the Markov chain
Monte Carlo (MCMC) methods to estimate the model.
Chib and Greenberg (1995) extended the model with
vector autoregressive and vector moving average
errors of the first order. Thus, we propose a Bayesian
approach for the estimation of the models (spatial
autoregressive and spatial error models) using MCMC
methods. We also introduce the marginal likelihood
to compare the models with and without spatial
interaction. Moreover, our approach is illustrated by
real data set.

In the real data example, we examined the economics
of agglomeration with and without interregional spill-
overs by panel data during the periods 1991 to
2000, which is called “lost decade”. 1 Empirical
results show that the spatial error SUR model is
the best model and that (1) Average TFP is the
source of economic growth in Japanese manufacturing

1In 1991, the collapse of bubbles occurred and Japan
experienced the big recession, which Japan has never experienced.
Therefore, it is the concern of Japanese economy to examine what
happened in this decade.

industries in this decade. (2) Manufacturing industries
in Japan became more labor intensive. (3) The
economics of agglomeration and spill-over effects
became smaller over time and spill-over effect
vanished in 1993.

The rest of this paper is organized as follows. In
Section 2, we summarize the spatial autoregressive
SUR model. Section 3 obtains a joint posterior
distribution and discusses computational strategy of
the MCMC method. In Section 4, we introduce
the economic model and examine the economics of
agglomeration in Japan during the period 1991 to
2000. Finally, brief conclusions and remaining issues
are given in Section 5.

2 SPATIAL AUTOREGRESSIVE SEEMINGLY
UNRELATED REGRESSION MODEL

In this section, we will introduce the spatial
autoregressive seemingly unrelated regression (SAR-
SUR) model. 2 Let yit and xit be a dependent variable
and a 1 × k vector of covariates on ith unit (i =
1, · · · , N ) and tth period (t = 1, · · · , T ), respectively.

In the spatial model, the weight matrix W plays an
important role. Therefore, we briefly explain the
weight matrix, which we use in this paper. We use
the contiguity weight matrix and the definition of
contiguity obviously assumes the existence of a map,
from which the boundaries can be discerned. For

Figure 1. An example of contiguity weight matrix

example, Figure 1 shows the 5 spatial units’ example.
In this figure, unit 1 is connected to unit 2, 3 and
4. Unit 2 is connected to 1, 3, 4 and 5 and so on.

2Spatial autoregressive model is widely used in examining
spatial interaction (see e.g., Kakamu et al., 2007). Therefore,
we will introduce the model in this section. However, there are
several spatial models (see e.g., Anselin, 1988) and we will also
examine the spatial error model (SEM) in this paper. It is possible
to construct a spatial error SUR (SEM-SUR) model with some
modifications of SAR-SUR model.
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Therefore, the following weight matrix is constructed.

unit 1 unit 2 unit 3 unit 4 unit 5
unit 1 0 1 1 1 0
unit 2 1 0 1 1 1
unit 3 1 1 0 0 0
unit 4 1 1 0 0 1
unit 5 0 1 0 1 0

In this weight matrix, the diagonal elements take 0
and the connections are expressed by 1. Thus, let
wij denote the spatial weight on jth unit with respect
to ith unit, that is, the ijth element of W. In the
SAR-SUR model, the coefficients are constant across
space, but vary for each time period. The error
terms are temporally correlated i.e., there is a constant
covariance between errors for different time periods
for the same spatial units. Then, the SAR-SUR model
conditioned on parameters ρt, βt and ωts for t, s =
1, · · · , T is written as follows:

yit = ρt

N�
j=1

wijyjt + xit�t + εit, with E[εitεis] = ωts

(1)

In matrix form, the equation for each time period t
becomes:

yt = ρtWyt + Xt�t + �t, with E[�t�
′
s] = ωtsIN (2)

where yt and εt are N × 1 vectors, W is a N × N
weight matrix, Xt is a N × k matrix of independent
variables and IN is a N × N unit matrix. The
equations for time periods 1 to T are combined as:�
����

y1

y2

...
yT

�
���� =

�
����

ρ1W 0 · · · 0
0 ρ2W · · · 0
...

...
. . .

...
0 0 · · · ρT W

�
����

�
����

y1

y2

...
yT

�
����

+

�
����

X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · XT

�
����

�
����

�1

�2

...
�T

�
����+

�
����

�1

�2

...
�T

�
���� (3)

or, grouped

y = (D ⊗ W)y + Xβ + ε, ε ∼ N (0, Ω ⊗ IN ) (4)

where y is a NT × 1 vector of dependent variables,
D is a T × T diagonal matrix with ρ1, · · · , ρT as its
elements, X is a NT ×kT block diagonal matrix, ε is
a NT × 1 error vector, and Ω is a T × T matrix with
ωts as its elements.

Then, the likelihood function of the model (4) is given
as:

L(y|D,β, Ω−1,X,W) ∝
{

T∏
t=1

|IN − ρtW|
}
|Ω−1|N

2

exp
{
−e′(Ω−1 ⊗ IN )e

2

}
(5)

where e = y − (D ⊗ W)y − Xβ.

3 POSTERIOR ANALYSIS

3.1 Joint posterior distribution

Since we adopt a Bayesian approach, we complete
the model by specifying the prior distribution over the
parameters. Therefore, we apply the following prior;

π(D,β, Ω−1) =

{
T∏

t=1

π(ρt)

}
π(β)π(Ω−1)

Given a prior density π(D,β, Ω−1) and the likelihood
function given in (5), the joint posterior distribution
can be expressed as

π(D,β, Ω−1|y,X,W)

∝ π(D,β, Ω−1)L(y|D,β, Ω−1,X,W),

∝
{

T∏
t=1

1
λ−1

max − λ−1
min

1[λ−1
min,λ−1

max](ρt)

}

× exp
{
− (β − β∗)′Σ−1

∗ (β − β∗)
2

}

× |Ω−1| ν∗−T−1
2 exp

{
− tr(Ω−1Ω−1

∗ )
2

}

×
{

T∏
t=1

|IN − ρtW|
}
|Ω−1|N

2

× exp
{
−e′(Ω−1 ⊗ IN )e

2

}
(6)

where 1[a,b](x) is an indicator function, which takes 1
when x is in the interval between a and b.

Finally, we assume the following prior distributions;

ρt ∼ U(λ−1
min, λ−1

max),
β ∼ N (β∗, Σ∗),

Ω−1 ∼ W(Ω∗, ν∗)

where W(M, a) denotes an wishart distribution with
scale matrix M and degree of freedom a. λmin and
λmax denote the minimum and maximum eigenvalues
of W. As is shown in Sun et al. (1999), it is well
known that λ−1

min < 0 and λ−1
max > 0 and ρt must lie in

the interval. Therefore, we restrict the prior space as
ρt ∈ (λ−1

min, λ−1
max).

3.2 Posterior simulation

Since the joint posterior distribution is given by (6),
we can now use MCMC methods. The Markov chain
sampling scheme can be constructed from the full
conditional distributions of ρt for t = 1, · · · , T , β
and Ω−1.
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3.2.1 Sampling ρt for t = 1, · · · , T

From (6), the full conditional distribution of ρt is
written as:

π(ρt|D−t, β, Ω−1,y,X,W)

∝ |IN − ρtW| exp
{
− tr(Ω−1E′E)

2

}
(7)

where D−t is D without ρt and E is N × T matrix
with vec(E) = e, which cannot be sampled by
standard methods. Therefore, we adopt a following
random-walk Metropolis algorithm (see e.g., Tierney,
1994).

Sample ρnew
t from

ρnew
t = ρold

t + cφ, φ ∼ N (0, 1). (8)

The scaler c is called tuning parameter and ρold
t is the

parameter of the previous sampling. Next, we evaluate
the acceptance probability

α(ρold
t , ρnew

t )

= min

�
π(ρnew

t |D−t,�, Ω−1, y,X,W)

π(ρold
t |D−t,�, Ω−1,y,X,W)

, 1

	
(9)

Finally we set ρt = ρnew
t with probability

α(ρold
t , ρnew

t ), otherwise ρt = ρold
t . The scalar c

is tuned to produce an acceptance rate between 10%
and 30% as is suggested in Holloway et al. (2002).
3 It should be mentioned that the proposal density of
ρt is not truncated to the interval (λ−1

min, λ−1
max) since

the constraint is part of the target density. Thus, if
the proposal value of ρt is not within the interval,
the conditional posterior is zero, and the proposal
value is rejected with probability one (see Chib and
Greenberg, 1998).

3.2.2 Sampling β and Ω−1

The full conditional distributions for β and Ω−1 are
as follows:

π(β|D,Ω−1,y,X,W) ∝ N (β∗∗, Σ∗∗),
π(Ω−1|D,β,y,X,W) ∝ W(Ω∗∗, ν∗∗),

with ȳ = y − (D ⊗ W)y, β∗∗ = Σ∗∗{X′(Ω−1 ⊗
IN )ȳ+Σ−1∗ β∗}, Σ∗∗ = {X′(Ω−1⊗IN)X+Σ−1}−1,
Ω∗∗ = (E′E + Ω−1

∗ )−1 and ν∗∗ = N + ν∗.

These parameters are easily sampled from Gibbs
sampler (see e.g., Gelfand and Smith, 1990).

3In Holloway et al. (2002), the scalar c is selected to make
the acceptance rate between 40% and 60%. However, we
considered the inefficiency factor and select the scalar c to make
the inefficiency factor smallest.

4 EMPIRICAL EXAMPLE

4.1 A regional economic model for Japan during
1991-2000

We extend the regional production function model of
Kanemoto et al. (1996) to the spatial agglomeration
model for 47 Japanese prefectures during the decade
from 1991 to 2000. We estimate aggregate production
functions for prefectures to derive the dynamics
of agglomeration economies and interregional spill-
overs 4. An aggregate production function in a
prefecture is written as Y = F (L, K, S), where L,
K , S, and Y are respectively the employment, the
private capital, the spill-overs, and the total production
(or value added) in a prefecture. We assume
that in the absence of agglomeration economies the
production function exhibits constant returns to scale
with respect to labor and capital inputs. The degree
of agglomeration economies can then be measured
by the degree of increasing returns to scale of the
estimated production function.

This approach is justified if we assume that
technological externalities exist between firms in
a prefecture. For example, suppose a firm in
a prefecture receives external benefits from urban
agglomeration, measured by the total employment
L, and from spill-overs S. Assuming that the firm
uses labor n and (private) capital k as inputs, we
can write its production function as f(n, k, L, S).
For expositional simplicity, we assume that all firms
are identical. The total production in a prefecture
is then Y = mf(L/m, K/m, L, S), where m is
the number of firms in a prefecture. Free entry of
firms guarantees that the size of an individual firm
is determined such that the production function of
an individual firm, f(n, k, L, S), exhibits constant
returns to scale with respect to n and k. This condition
determines the number of firms m as a function of
other variables, m = m∗(L, K, S). The aggregate
production function is then

F (L,K, S) = m∗(L, K, S)

f

(
L

m∗(L, K, S)
,

K

m∗(L, K, S)
, L, S

)

This aggregate production function satisfies

FL(L, K, S) = m

[
1
m

fn + fL

]
+ m∗

L[f − nfn − kfk]

= fn(n, k, L, S) + mfL(n, k, L, S),

where subscripts denote partial derivatives and the
second square bracket equals zero because of

4We have to mention that our main concern is in the transition
of agglomeration economies, although Kanemoto et al. (1996) is
interested not only in the magnitude of agglomeration economies
but also in testing Tokyo is too large or not. Therefore, we only
focus on the estimation of agglomeration economies in this paper.
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constant-returns-to-scale condition. The last term
mfL measures the marginal benefits of agglomeration
economies.

Although a variety of functional forms are possible for
the urban production function, we consider a simple
Cobb-Douglas type:

Yit = AitK
αt

it Lγt

it . (10)

The magnitude of agglomeration economies can be
measured by the degree of scale economy, αt +γt−1.

Next, we will introduce the interregional spill-
overs. We examine interregional spill-overs using
the spatial econometrics technique. Suppose that
the interregional spill-overs change the total factor
productivity Ait and is related to the regional weight
wij and Yjt/Ljt. This yields the following total factor
productivity:

Ait = A0t ×
∏
j

(
Yjt

Ljt

)ρtwij

(11)

ρ is the intensity of spatial interaction. Substitute (11)
for (10) and rearrange the equation, to obtain;

ln

(
Yit

Lit

)
= lnA0t + ρt

∑
j

wij ln

(
Yjt

Ljt

)

+ a1t ln

(
Kit

Lit

)
+ a2t ln(Lit) (12)

where αt = a1t and γt = a1t + a2t. Then,
the economics of agglomeration is evaluated by a2

(see Kanemoto et al., 1996) and we can estimate by
spatial autoregressive model. However, as we use
the panel data, we have to consider the correlation
among periods. Therefore, we will use our SAR-SUR
model.5

4.2 Empirical results

Before examining empirics, we explain the data
used in this paper. Our data set stems from the
Census of Manufactures prepared by the Ministry of
International Trade and Industry (MITI) of Japan. For
47 prefectures, the total production is added values
of manufacturing industries, the total capital is the
amount on hand of permanent assets and the total
employment is the common labors, which exclude
part time labor. As a weight matrix W, we use
the contiguity dummy variables proposed by Kakamu
et al. (2007), which considers the connection of

5If we replace the spill-over in (12) to Ait = A0t ×�
j(Yjt/A0tLα

jtK
γ
jt)

ρtwij , then we can construct SEM-SUR
model. Of course, if we assume Ait is equal in all regions, it is
reduced to simple SUR model.

Table 1. Log marginal likelihood

SAR-SUR SEM-SUR SUR

335.323 357.766 344.764

economic activities6 and average number of dummy
variables are 4. Using the given following hyper-
parameters;

β∗ = 0, Σ∗ = 100 × IkT ,

Ω∗ = 100 × IT , ν∗ = T + 1,

we ran the MCMC algorithm using 100000 iterations
and discarding the first 50000 iterations. All results
reported here were generated using Ox version 4.10
(see Doornik, 2006). 7

First of all, we have to consider which model is the
best model, that is, whether there exists interregional
spill-over or not and which kind of spill-over effect
exists if the spill-over effext exists. For the model
choice, we use the marginal likelihoods proposed by
Chib (1995).

Table 1 shows the log marginal likelihoods of all
models: SAR-SUR, SEM-SUR and SUR models.
From the results, we can find that the SEM-SUR
model is the best model and we will show the result of
SEM-SUR model hereafter. However, it is reasonable
to compare the SEM-SUR model with the simple
SUR model, because it implies that we compare the
economics of agglomeration with and without spill-
over effects, we also introduce the results of the SUR
model.

Table 2 shows the coefficient estimates (lnA0, a1,
a2, ρ) of the SEM-SUR model (above) and SUR
model (below) in the selected years, respectively.
Figure 2 also shows the (marginal) posterior
distributions of the coefficients by box plots. First
of all, we see that all the coefficients except for ρ in
1993-2000 do not include zero in the 95% credible
interval. When we compare the results with and
without spill-overs, in Table 2, can find that all the
posterior means in SEM-SUR are larger than those
in SUR model. It implies that if we ignore the
spill-over effects, we might misinterpret the source

6All except one (Okinawa) Japanese prefectures are situated on
the four major islands, Hokkaido, Honshu, Shikoku and Kyushu.
But these four islands are connected by train and roads, despite
the fact that islands are separate geographical entities. But for
example, the most northern island Hokkaido is connected by the
Seikan railway tunnel to Honshu. And Honshu is connected by
the Awaji and Seto Bridge to Shikoku, and the southern island
of Kyushu is also connected by the Kanmon Tunnel and Bridge
to Honshu. Therefore, Okinawa is the only prefecture which is
independent of all other prefectures. In addition, the weight matrix
is row standardized, that is,

�N
j=1 wij = 1, for identification.

7The code as well as the derivation of the algorithm were
checked using the joint distribution test described in Geweke
(2004) and the convergence of MCMC is checked by convergence
diagnostic proposed by Geweke (1992).
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Figure 2. Box plots of lnA0, a1, a2 and ρ

Table 2. Empirical results: Posterior means and
standard deviations (in parenthesis)

Spatial error SUR model
1991 1993 1995

ln A0 2.792 (0.490) 3.254 (0.476) 3.400 (0.456)
a1 0.332 (0.062) 0.293 (0.055) 0.303 (0.053)
a2 0.163 (0.029) 0.144 (0.029) 0.131 (0.028)
ρ 0.201 (0.098) 0.162 (0.092) 0.140 (0.091)

1996 1998 2000

ln A0 3.348 (0.452) 3.305 (0.440) 4.092 (0.522)
a1 0.295 (0.052) 0.293 (0.050) 0.211 (0.059)
a2 0.143 (0.027) 0.145 (0.027) 0.130 (0.031)
ρ 0.198 (0.097) 0.075 (0.091) 0.061 (0.098)

SUR model
1991 1993 1995

ln A0 3.009 (0.526) 3.493 (0.496) 3.607 (0.473)
a1 0.295 (0.064) 0.262 (0.055) 0.278 (0.052)
a2 0.165 (0.031) 0.141 (0.032) 0.128 (0.030)

1996 1998 2000

ln A0 3.665 (0.473) 3.478 (0.453) 4.292 (0.534)
a1 0.252 (0.052) 0.275 (0.049) 0.193 (0.058)
a2 0.140 (0.030) 0.141 (0.028) 0.125 (0.032)

of economic growth because lnA0, a1 and a2 are
underestimated in case of SUR model. Hence, when
we focus on the result of SEM-SUR model in Figure
2, there are following tendencies in each parameter.
The posterior means of lnA0 became larger over
time. It means that the average TFP was a driving
force of economic growth in Japanese manufacturing
industries in this decade. However, if we consider
the fact that Japan experienced serious recession, we
might be able to conclude that the average TFP was
not so strong force for economic growth compared
with the other sources of economic growth. On the
other hand, the capital-labor intensity, a1, became
smaller over time, especially in 2000. It implies
that manufacturing industries in Japan became more
labor intensive8. The coefficient of the economics
of agglomeration, a2, also became smaller over time.

8In spite of the fact that the Japanese manufacturing industries
are automated, which means capital intensive, after the oil shock
drastically, the result is opposite to the fact. It is interesting result
but it may be caused by the data set problem or it needs more detail
analysis to examine what happened to the manufacturing industries
in this decade.

1 2 3 4 5 6 7 8 9

0.
6

0.
7

0.
8

0.
9

1.
0

Implied average autocorrelation function

Figure 3. Box plot autocorrelation function

Moreover, concerning the spill-over effect, ρ, we
note that the effect decline and vanished in 1993.
From the evidences, we conclude that the power of
economics of agglomeration and spill-over effects
became smaller and smaller after the collapse of
bubbles in 1991, that is, the big recession in the 1990s,
which is also called “lost decade”, might be associated
with a declining importance of the economics of
agglomeration and spill-over effects.

Figure 3 shows the box plots (of off-diagonal elements
of correlation matrix) in SEM-SUR model, which can
be interpreted as an implied autocorrelation function.
It shows that the serial correlation plays an important
role in analysing production function in Japanese
manufacturing industries. The high serial correlation
can be also seen on box plots in Figure 3.

5 CONCLUSIONS

This paper examined the SUR model with spatial
dependencies from a Bayesian point of view. We
expressed the joint posterior distribution of the
model, and proposed MCMC methods to estimate the
parameters of the model. We have illustrated our
approach using Japanese manufacturing industries’
data and examined the economics of agglomeration in
Japan during the period 1991 to 2000.

From the results, we found that the SEM-SUR model
is the best model and serial correlation played an
important role. In addition, following tendencies are
confirmed: (1) Average TFP is the source of economic
growth in Japanese manufacturing industries in this
decade. (2) Manufacturing industries in Japan
became more labor intensive. (3) The economics of
agglomeration and spill-over effects became smaller
over time and spill-over effect vanished in 1993.
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Finally, we will mention about the remaining issues.
As is pointed out above, the result that the Japanese
manufacturing industries became labor intensive
seems to be different from the situation in this decade
in Japan. We cannot conclude what happened to
the Japanese manufacturing industries in this decade
only from our empirical results. However, it beyonds
our analysis and it requires other moderate model
or theory, like human capital theory. Moreover,
we mentioned that the serial correlation plays an
important role in this model. If we extend the model
by Chib and Greenberg (1995) to spatial model, the
serial correlation may become small. However, as
our main purpose is to examine the SUR model with
spatial dependencies, it also beyond our analysis,
but our findings from Japanese cases represent an
interesting firs step.
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