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EXTENDED ABSTRACT 

The joint distributional characteristics of asset 
returns, especially second moment structure (i.e., 
volatility), are essential to the analysis of financial 
issues such as asset pricing, portfolio allocation 
and risk management. Many traditional financial 
models have assumed constant volatilities and 
correlations among returns, but empirical evidence 
have shown them to vary significantly over time, 
and much effort has been put into the modeling 
and forecasting of their properties and structure. 

Over time, the availability of data for increasingly 
shorter return horizons has enabled practitioners to 
narrow the frequencies of their volatility models. 
However, progress has stalled over the modeling 
of daily return volatilities, partly due to standard 
volatility models’ general inability to handle intra-
day data, while few high-dimensional models have 
been suggested for practical use as well. As for 
several notable multivariate autoregressive 
conditional heteroskedasticity (ARCH) and 
stochastic volatility models being proposed, 
namely Bollerslev, Engle and Nelson (1994) and 
Ghysels, Harvey and Renault (1996), have also 
been challenged for being unable to deal with more 
than a few assets simultaneously. 

At the same time, others have relied on ad hoc, 
model-free approaches like simple exponential 
smoothing based on the counterfactual assumption 
of conditionally normally distributed returns, or 
through squared returns over the relevant return 
horizon, which in turn does not account for the 
presence of noise. 

The limitations of the above approaches have led 
researchers to seek an alternative framework. 
Andersen, Bollerslev, Diebold and Ebens (2001) 
(henceforth ABDE) and Barndorff-Nielsen and 
Shephard (2002) both turned to a new “realized 
volatility” approach. In particular, ABDE proposed 
using continuously recorded transaction prices and 
by summing squares and cross-products of intra-
day high-frequency returns, they constructed 
estimates known as ex post realized daily 
volatilities. Under the theory of quadratic 
variation, the realized daily volatility obtained is 

an unbiased and highly efficient estimator of return 
volatility. The advantages of such a measure are 
that the volatility measures are model-free, and are 
free from measurement error as the sampling 
frequency of the returns approaches infinity. 

Under the realized volatility approach, ABDE 
(2001) focused on 30 stocks in the Dow Jones 
Industrial Average (DJIA). They also settled down 
on 5-minute intervals as the effective “continuous 
time record” so as to tackle microstructure 
frictions such as bid-ask bounce effects and price 
discreteness. Meanwhile, Andersen, Bollerslev, 
Diebold and Labys (2003) again adopted a similar 
approach to estimate exchange rate volatilities, 
while choosing 30-minute intervals. 

Nevertheless, we observed that similar studies on 
high-frequency financial data have mainly 
concentrated on developed markets while 
relatively little has been done on emerging markets 
like Hong Kong. This paper is a preliminary 
attempt to study the volatility structure of shares 
listed on the Hong Kong Exchanges and Clearing 
Limited (HKEx) using transaction data. Here, we 
will follow ABDE (2001) approach on high-
frequency financial data to observe the volatility 
structure of Hong Kong shares. Meanwhile, due to 
the need for high-frequency price observations, we 
would focus on the constituents stocks of HSI and 
HSCEI for all transactions between January 2004 
and December 2005. 

Using the sample of constituent stocks of Hang 
Seng Index (HSI) and Hang Seng China 
Enterprises Index (HSCEI or “H-shares Index”), 
we found that the mean daily realized volatilities 
of HSCEI to be significantly higher than its HSI 
counterpart, while the correlations between H-
shares stay relatively lower than that of HSI 
stocks. A long-memory effect is also reported for 
the logarithmic standard deviations of all shares, 
with most of them showing slow decay over the 
series. 
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1. INTRODUCTION 

Financial market volatility is central to the theory 
and practice of asset pricing, asset allocation, and 
risk management. The need for an appropriate 
framework of (conditional) variance of financial 
asset returns has led to the analysis of “realized 
volatility” using high frequency intraday data. See 
McAleer and Medeiros (2007) for an excellent 
review of the rapidly expanding literature on this. 

To set out the basic idea and intuition of realized 
volatility, let us first consider the case of no 
microstructure frictions such as price discreteness, 
infrequent trading, and bid-ask bounce effects. 
Assume that the logarithmic N × 1 vector price 
process, pt, follows a multivariate continuous time 
stochastic volatility diffusion, 

tttt Wtp ddd Ω+= μ , (1) 

where Wt denotes a standard N-dimensional 
Brownian motion, the process for the N × N 
positive definite diffusion matrix, Ωt, is strictly 
stationary, and we normalize the unit time interval, 
or h = 1, to represent one trading day. Conditional 
on the sample path realization of μt and Ωt, the 
distribution of the continuously compounded h-
period returns, rt+h,h = pt+h − pt; is then 
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where h
tt 0},{ =++ Ω τττμσ  denotes the σ-field generated 

by the sample paths of μt+τ and Ωt+τ for 0 ≤ τ ≤ h. 
The integrated diffusion matrix thus provides a 
natural measure of the true latent h-period 
volatility. By the theory of quadratic variation, we 
have that under weak regularity conditions, 
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almost surely for all t as the sampling frequency of 
the returns increases, or Δ → 0. Thus, by summing 
sufficiently finely sampled high-frequency returns, 
it is possible to construct ex post realized volatility 
measures for the integrated latent volatilities that 
are asymptotically free of measurement error. 
ABDE (2001) obtained the realized daily 
covariance matrix as 

ΔΔ+ΔΔ+ ′≡ ,, jtjtt rrCov , (4) 

with Δ referring to each incremental time interval, 
which is small enough to be considered continuous 
in the model. 

2. DATA 

Our empirical analysis is based on selected stocks 
in HSI and HKCEI with data from HKEx database. 
Specifically, we focus on 25 firms with highest 90-
day average trading volume in each index to 
ensure a reasonable degree of liquidity. 

It is known that intraday quotes and transaction 
prices are subject to various regulatory measures 
and bid-ask bounce effects. Such market 
microstructure characteristics potentially distort 
the distributional properties of intraday returns 
thereby distorting the results of statistical 
inference. Following ABDE (2001), we resort to 
artificially constructed five-minute returns which 
are believed to be a balance between reducing the 
effect of various market microstructures and 
finding appropriate discrete approximations of 
quadratic variations. In case there are no 
transactions in our predetermined time intervals, 
the price of the one immediately before the mark 
will be selected to replace the missing data. 

With daily transactions from 10:00 HKT to 12:30 
HKT and 14:30 HKT to 16:00 HKT, a total of 48 
records can be collected each day, i.e., Δ = 1/48. 
Our sampling starts from 2 January 2004 to 31 
December 2005, with a total of 496 trading days 
and hence we have a total of 23,808 samples for 
each stock. 

It should be noted, however, microstructure effects 
can introduce a severe bias on the daily volatility 
estimation rendering the approach along the lines 
of ABDE (2001) sub-optimal in comparison with 
the more recent approaches as in Barndorff-
Nielsen, Hansen, Lund and Shephard (2006a, 
2006b), Aït-Sahalia, Mykland and Zhang (2005, 
2006) and Zhang, Mykland and Aït-Sahalia 
(2005). 

3. UNIVARIATE UNCONDITIONAL 
RETURN AND VOLATILITY 
DISTRIBUTIONS 

3.1. Returns 

The summary statistics in Table 1 show that the 
daily return of HSI and HKCEI stocks, ri,t, have 
fatter tails than the normal distribution and for 
majority of stocks, they are skewed to the right. In 
addition, they are in line with previous empirical 
evidence about the fat-tail characteristics of 
returns. The average values of skewness 
coefficients are 0.14/0.01 (HSI/HSCEI) for raw 
returns and 0.10/0.07 (HSI/HSCEI) for 
standardized returns, while the average values of 
excess kurtosis are 2.33/2.28 (HSI/HSCEI) for raw 
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returns and 0.49/0.55 (HSI/HSCEI) for 
standardized returns. 

Figure 1 plots the standardized returns for Esprit 
(0330.HK) as an example. It can be seen that 
normal distribution may be reasonable but not a 
very good description of the data. This result is in 
line with the leptokurtic distributions for 

standardized high-frequency returns implicitly 
assumed in ARCH and stochastic volatility model. 

3.2. Variances and Log Standard Deviations 

Table 2 provides the same set of summary 
statistics for the unconditional realized daily return 
variances and logarithmic standard deviations. In 
Panel A, the averages of daily variance (column 1) 
are 4.81 and 11.65 for HSI and HSCEI stocks, 
which translate to an annualized volatility of 
34.5% and 53.7%. The standard deviation of the 
realized volatility (column 2) indicates that the 
realized volatility of different assets vary 
significantly over time. The skewness (column 3) 
and excess kurtosis (column 4) of daily realized 
variances show that the distributions are highly 
skewed to the right and leptokurtic with average 
skewness of 3.33/3.05 (HSI/HSCEI) and average 
excess kurtosis of 25.6/28.47 (HSI/HSCEI) 
respectively. Such results show that normality 
assumption is not appropriate for return variances. 

Panel B reports the summary statistics of 
logarithmic realized volatility, lvi,t. It can be seen 
that the average values of the sample skewness are 
close to zero for the realized variances albeit being 
slightly negative. The excess kurtosis coefficients 
are significantly lower and hence the assumption 

Table 1. Unconditional daily return distributions. 

Panel A: ri,t 
HSI Mean S.D. Skew. Ex. Kurt.
Avg. 0.026 1.463 0.135 2.329 
S.D. 0.106 0.446 0.313 1.273 
Min. −0.121 0.533 −0.596 0.232 
Max. 0.412 2.411 0.885 4.906 
     
HSCEI Mean S.D. Skew. Ex. Kurt.
Avg. −0.004 2.213 0.005 2.275 
S.D. 0.111 0.339 0.246 1.285 
Min. −0.242 1.439 −0.564 0.627 
Max. 0.174 2.748 0.461 5.875 
     
Panel B: ri,t / vi,t 
HSI Mean S.D. Skew. Ex. Kurt.
Avg. 0.005 0.702 0.104 0.488 
S.D. 0.049 0.137 0.182 0.576 
Min. −0.137 0.492 −0.321 −0.369 
Max. 0.121 0.920 0.365 1.857 
     
HSCEI Mean S.D. Skew. Ex. Kurt.
Avg. 0.000 0.644 0.073 0.552 
S.D. 0.042 0.122 0.132 0.494 
Min. −0.116 0.445 −0.270 −0.350 
Max. 0.081 0.994 0.434 1.468 

Table 2. Unconditional volatility distributions. 

Panel A: vi,t
2 

HSI Mean S.D. Skew. Ex. Kurt.
Avg. 4.810 3.329 3.334 25.647 
S.D. 3.323 2.045 2.125 34.962 
Min. 1.078 0.677 0.859 0.308 
Max. 12.632 7.860 10.108 158.828
     
HSCEI Mean S.D. Skew. Ex. Kurt.
Avg. 11.655 7.506 3.053 28.470 
S.D. 2.712 2.839 3.457 73.735 
Min. 4.912 4.007 0.702 0.521 
Max. 17.237 18.674 18.010 370.773
     
Panel B: lvi,t 
HSI Mean S.D. Skew. Ex. Kurt.
Avg. 0.582 0.318 −0.043 0.936 
S.D. 0.331 0.080 0.467 1.089 
Min. −0.055 0.199 −0.980 −0.869 
Max. 1.227 0.586 0.702 3.353 
     
HSCEI Mean S.D. Skew. Ex. Kurt.
Avg. 1.125 0.290 −0.299 1.276 
S.D. 0.170 0.060 0.456 0.933 
Min. 0.659 0.189 −1.076 −0.134 
Max. 1.374 0.471 0.559 3.353 

Figure 1. Unconditional distribution of the 
standardized daily returns on Esprit (0330.HK). 
The sample period extends from January 2, 2004 
and December 30, 2005, for a total of 496 daily 

observations. The curve refers to the normal 
density. 
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of normality may be more appropriate in this case. 

3.3. Covariances and Correlations 

Table 3 reports the summary statistics of the 
covariances and correlations between log realized 
volatilities. The averages of covariances and 
correlations across all stocks are 0.41/0.81 
(HSI/HSCEI) and 0.09/0.06 (HSI/HSCEI) with 
substantial variations over time indicated by their 
standard deviations (column 2). The skewness and 
excess kurtosis of realized covariances and 
correlations are reported in columns 3 and 4 
respectively. The average skewness and excess 
kurtosis for realized covariances are 2.2/1.4 
(HSI/HSCEI) and 15.0/9.0 (HSI/HSCEI), 
compared to almost zeros for realized correlations. 
It seems that the distributions of the realized 
covariances are right skewed, but the correlations 

appear to be normally distributed. 

 

Figure 3 shows the unconditional realized 
correlation between Cheung Kong Holdings 
(0001.HK) and Hutchison Whampoa (0013.HK), 
the two largest stocks in HSI in terms of market 
capitalization. It appears that normal distribution 
can serve as a good approximation to the daily 
realized correlations. 

4. DYNAMIC DEPENDENCE OF 
VOLATILITIES AND CORRELATIONS 

After exploring the unconditional distributions of 
the return generating process, we extend our 
analysis to the conditional distributions of the 
volatility processes. Previous studies have shown 
the existence of long-term dependence in 
volatility. Here we focus on logarithmic volatilities 
and correlations since both can be approximated 
well by normal distributions, with results in Table 
4. 

 

Table 3. Unconditional covariances and 
correlations distributions. 

Panel A: Covi,j,t 
HSI Mean S.D. Skew. Ex. Kurt.
Avg. 0.411 0.946 2.197 15.030 
S.D. 0.193 0.379 1.437 18.445 
Min. 0.049 0.275 −0.286 0.756 
Max. 1.091 2.380 8.595 123.234
     
HSCEI Mean S.D. Skew. Ex. Kurt.
Avg. 0.807 2.342 1.413 9.045 
S.D. 0.354 0.530 1.119 10.137 
Min. 0.210 1.204 −4.165 0.822 
Max. 2.288 4.863 5.894 80.562 
     
Panel B: Corri,j,t 
HSI Mean S.D. Skew. Ex. Kurt.
Avg. 0.093 0.177 −0.003 −0.025 
S.D. 0.045 0.010 0.118 0.240 
Min. 0.031 0.154 −0.390 −0.630 
Max. 0.309 0.236 0.288 1.057 
     
HSCEI Mean S.D. Skew. Ex. Kurt.
Avg. 0.059 0.172 0.024 −0.002 
S.D. 0.020 0.008 0.108 0.255 
Min. 0.020 0.149 −0.281 −0.591 
Max. 0.158 0.196 0.332 0.853 

Figure 2. Unconditional distribution of the 
standardized daily realized logarithmic standard 
deviations for Wharf Holdings (0004.HK). The 

realized volatilities are calculated from five-minute 
intraday returns. The curve refers to the normal 

density. 

Figure 3. Unconditional distribution of the 
standardized realized daily correlations between 

Cheung Kong Holdings (0001.HK) and Hutchison 
Whampoa (0013.HK). The realized correlations 
are calculated from five-minute intraday returns. 

The curve refers to the normal density. 
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4.1. Logarithmic Standard Deviations 

In Figure 4, we present the time-series plot of the 
logarithmic standard deviations of Cheung Kong 
Holdings (0001.HK), which shows possible 
positive autocorrelation in Figure 5. 

 

We report the values of standard Ljung-Box 
portmanteau test for the joint significance of the 
first 22 autocorrelations of lvi,t in column 1 of 
Panel A. The null hypothesis is significantly 
rejected for all stocks. In fact, the autocorrelations 
are systematically above the conventional 95% 
confidence band, even at a long horizon of 120 
trading days (approximately half year). This slow 
delay has led us to perform augmented Dickey-
Fuller tests to detect the existence of unit roots in 
each of the volatility series. The results are 
reported in column 2, which shows that not all 
stocks can reject the null hypothesis at 5% level. 

With such findings, we extend the analysis to 
examine the potential long-memory effect modeled 
by a FIGARCH model as in Baillie, Bollerslev and  
Mikkelsen (1996). Using the approach developed 
in Geweke and Porter–Hudak (1983), the degree of 
fractional integration for the realized logarithmic 
volatilities, denoted as dGPH, are shown in the third 
column in Panel A. The average values are 
0.58/0.56 (HSI/HSCEI) with respective standard 
deviations of 0.14/0.12 (HSI/HSCEI). Therefore, 
the results seem to suggest the existence of long-
memory effects in logarithmic realized standard 
deviations 

4.2. Correlations 

Panel B of Table 4 reports the results on the 
temporal behavior of the daily realized correlations 
Corri,j,t. Compared to the analysis in section 5.1, 
the null hypothesis of no autocorrelation is not 
rejected for quite a number of stocks using Ljung-
Box portmanteau test. Similarly, we test for the 
existence of unit root by augmented Dickey-Fuller 
test, and we found that again quite a number of 

Table 4. Dynamic volatility dependence. 

Panel A: lvi,t 
HIS Q22 ADF dGPH 
Avg. 1820.540 −1.947 0.584 
S.D. 1614.710 0.675 0.143 
Min. 301.310 −3.025 0.340 
Max. 7007.940 −0.402 0.912 
    
HSCEI Q22 ADF dGPH 
Avg. 953.975 −2.351 0.559 
S.D. 762.417 0.631 0.116 
Min. 80.408 −3.207 0.302 
Max. 2840.620 −0.620 0.769 
    
Panel B: Corri,j,t 
HIS Q22 ADF dGPH 
Avg. 67.600 −3.627 0.233 
S.D. 176.480 0.764 0.176 
Min. 12.690 −6.047 −0.357 
Max. 1999.320 −1.304 0.812 
    
HSCEI Q22 ADF dGPH 
Avg. 64.815 −3.490 0.275 
S.D. 74.803 0.777 0.168 
Min. 11.350 −5.666 −0.183 
Max. 568.424 −1.406 0.743 

Figure 4. Time Series Plot for the logarithmic 
standard deviation of Cheung Kong Holdings 

(0001.HK). The figure shows the time series plot 
of the daily realized logarithmic standard 

deviations for Cheung Kong Holdings (0001.HK). 
The realized volatilities are calculated from five-

minute intraday returns. 

Figure 5. Sample autocorrelations for daily 
logarithmic standard deviations. The figure shows 
the sample autocorrelations for the daily realized 
logarithmic standard deviations for Cheung Kong 
Holdings (0001.HK), lv0001.HK,t ≡ log(v0001.HK,t), out 

to a displacement of 100 days. The realized 
volatilities are calculated from five-minute 

intraday returns. 
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correlation pairs cannot reject the null hypothesis. 
We then fit a FIGARCH model to investigate the 
long memory effect in the processes. The averages 
of dGPH are 0.23/0.27 (HSI/HSCEI) with standard 
deviations of 0.18/0.17 (HSI/HSCEI). Thus, the 
stationarity assumption for correlations does not 
seem to hold for some elements in the correlation 
matrix, although the evidence is much weaker than 
logarithmic standard deviations. 

Figure 6 shows the time-series plot of the realized 
correlations between Cheung Kong Holdings 
(0001.HK) and Hutchison Whampoa (0013.HK). 
Despite the variability, there does not seem to have 
strong evidence of possible autocorrelation. 

5. CONCLUSION 

In this paper, we analyzed the high-frequency 
transaction data for selected stocks in HSI and 
HSCEI over 2004–2005 based on ABDE (2001) 
approach. The univariate unconditional 
distributions of daily returns, variances, 
logarithmic standard deviations, covariances and 
correlations are examined. It is found that the 
mean daily realized volatilities of H-shares to be 
significantly higher than their HSI counterparts, 
while the correlations between H-shares stay 
relatively lower than that of HSI stocks. We also 
investigated the possible long-memory effect in 
realized logarithmic standard deviations and 
correlations through standard time series tests and 
FIGARCH model. It is found that realized daily 
logarithmic standard deviations demonstrated 
strong evidence of long-memory, while the long-
memory property seems to be weaker in 
correlations for large portion of stocks in our 
study. 

As mentioned in McAleer and Medeiros (2007), 
however, it should be noted that microstructure 
noise could cause severe problems in terms of 
consistent estimation of the daily realized volatility 
estimator along the lines of ABDE (2001). 
Therefore, further investigation on the volatility 
structures in Hong Kong stock market will be 
pursued in near future. 
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