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ABSTRACT

There exist many variations in yield curve modeling
based on the Nelson and Siegel’s (1987) exponential
components framework, but most of them do not care
about the generating process of the error term. We
often estimate parameters of the Nelson and Siegel’s
model using an estimation equation that consists
of the spot rate model with an independently and
identically distributed error term as the traditional
method. Usually, nonlinear least squares estimation
or maximum likelihood estimation is applied to the
model. In this specification, the error term may not
be only heteroskedastic but also serially correlated
because true covariance matrix of the error term is
unknown.

In this paper, to account for the possibility of mis-
specification, we propose a simple and natural method
of yield curve estimation using an instantaneous error
term which is generated by a standard Brownian
motion process. First, we add the instantaneous error
term to the Nelson and Siegel’s instantaneous forward
rate model. Second, differencing the multiperiod
spot rate models transformed from the Nelson and
Siegel’s instantaneous forward rate model, we obtain
a model with serially uncorrelated error terms because
they have a property of the independent increment.
In our specification, the error term is not serially
correlated but heteroskedastic, so we apply weighted
least squares estimation to the data. That is, this
specification about the error term does not lead to
incorrect estimation methods.

We compare the estimated parameters and the shapes
of the instantaneous forward rate and yield curves
using our specification of the error term and the
traditional method in empirical analysis. We use the
Japanese Yen Tokyo interbank offered rates (TIBOR)
as the spot rate. Some empirical examples in almost
periods show that estimated parameters using the
model proposed in this paper are similar to those
from traditional method. And the probabilities of
not rejecting the null hypothesis that the parameter
is equal to zero in the proposed modeling are totally
larger than those from the traditional estimation.

However, we find that the estimates of the Nelson
and Siegel’s model are possibly much different when

Table 1. An example of different estimated parame-
ters.

β0 β1 β2 τ
Our estimation method

2000/07/03 0.492 −0.371 −0.053 0.297
(11.71) (-6.60) (-0.09) (0.61)

Traditional estimation method
2000/07/03 0.436 −0.361 0.000 0.200

(25.65) (-24.01) (0.01) (2.63)

Note: β0, β1, β2 and τ are parameters of the Nelson and
Siegel’s model defined later to be estimated from the interest
rate data. The values in the parentheses represent estimates
of t-statistics.
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Figure 1. Fitted yield and forward rate curves by our
estimation method and traditional estimation method.

the fluctuations of TIBOR used in the estimation are
relatively volatile. Table 1 represents the estimated
parameters and Figure 1 plots the yield and forward
rate curves in the sample period. We find that the
fitted yield curve of our method is better/worse than
that of traditional method when the number of months
to settlement is long/short. From these results, we
find that the shapes of the instantaneous forward rate
curves change depending on different specification
of the error term such as our specification and the
other when the fluctuations of the interest rate are
volatile. In other words, it is important to consider
the specification of the error term carefully when we
investigate the statistical properties of the yield curves
or instantaneous forward rate curves.
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1 INTRODUCTION

Various theoretical models for term structures have
been developed. Considering these theoretical
advancements, term structure models are designed to
represent the whole yield curve, including the width
and pattern of interest rate fluctuations. From the price
theory of derivatives, no-arbitrary model is important.
Ho and Lee (1986) and Hull and White (1990) are
included in this tradition. The equilibrium models
that derive bond and option prices are also important.
Vasicek (1977) and Cox et al. (1985) followed this
literature. However, McCulloch’s (1975) modeling of
the discount function with cubic spline approximation
is suitable for analyzing the term structure or yield
curve. Following his model, Schaefer (1981),
Vasicek and Fong (1982) and Steely (1991) proposed
estimation with the Bernstein polynomial, exponential
spline and B-spline, respectively.

Nelson and Siegel (1987) proposed the exponential
components model for the instantaneous forward rate
curve. We denote this model as the NS model. This
model describes the instantaneous forward rate curve
in terms of level, slope and curvature. There exists
several exponential components models that estimate
the shape of yield curves, for example, Söderlind
and Svensson (1995) and Fujiki and Shiratuka (2002).
Diebold and Li’s (2006) paper presents an alternate
method. They introduced time-varying coefficients
into the NS model. These models are proposed from
a practical viewpoint.

In this paper, we focus on the assumption of the error
term introduced in the estimation of the NS model.
Despite various extensions to the modeling of the
Nelson-Siegel exponential components framework,
more discussion about the specification of the error
term is required. For instance, we often estimate
parameters of the NS model using an estimation
equation that consists of the spot rate model with
an independently and identically distributed error
term. Usually, nonlinear least squares estimation
or maximum likelihood estimation is applied to the
model. However, the error term may not be only
heteroskedastic but also serially correlated.

To account for the possibility of misspecification,
we propose an estimation equation with a naturally
specified error term by adding an instantaneous error
term to the instantaneous forward rate model. Then,
differencing the multiperiod spot rate models, the
model does not suffer from serial correlation of the
error term and its statistical properties are clearly
represented. This specification leads to correct
estimation of the NS model using nonlinear weighted
least squares estimation. Using some empirical
examples, we compare the estimated parameters,
the spot rate and instantaneous forward rate curves

to those using traditional maximum likelihood
estimation. First, the estimated parameters are
similar to those from traditional maximum likelihood
estimation. However, the shapes of the instantaneous
forward rate curves are different when the fluctuations
of interest rates used in the estimation are volatile.
Second, the probabilities of not rejecting the null
hypothesis that the parameter is equal to zero in our
estimation method are totally larger than those using
maximum likelihood.

The paper proceeds as follows. In Section 2, we
investigate the problems in the estimation of the NS
model and introduce the correct specification of the
error term. In section 3, we compare the estimated
results in some empirical examples. We conclude the
paper in section 4.

2 MODEL

In this section, we consider the estimation of the
instantaneous forward rate model of Nelson and
Siegel (1987). Let the instantaneous forward rate
at maturity m (the remaining periods until maturity
being m) be f(m). The NS model is given by:

f(m) = β0 + β1exp(−m/τ) + β2(m/τ)exp(−m/τ),
(1)

where β0, β1, β2 and τ are parameters to be estimated
from the interest rate data. The instantaneous forward
rate function is approximated by the sum of the
constant term and two exponential functions. As
m approaches infinity and zero, the value of f(m)
becomes β0 and β0 + β1, which represent Console
bonds and the instantaneous spot rate, respectively.
That is, the first and second terms represent the
contribution of the long- and short-term components
on the forward rate curve. β1 takes a negative value
when the shape of the forward rate curve is upward
sloping. Because it is reverse yield, β1 takes a positive
value. β2 is positive and negative when the medium-
term component on the forward rate curve creates a
hump shape and a U-shape, respectively. τ controls
the exponential convergence speeds of the second and
third terms. The large value of τ creates a gentle
slope and slows down the convergence speed to the
shape of the forward rate curve in the long run.
Some authors (for instance, Söderlind and Svensson
1995, Fujiki and Shiratuka 2002 and Diebold and
Li 2006) proposed various models based on the NS
model: Söderlind and Svensson (1995) added another
exponential term to this model, Fujiki and Shiratuka
(2002) introduced convergence of the second and third
terms. We do not consider their models in this paper
because we focus on the estimation methods of the NS
model.

Using the instantaneous forward rate f(m), we can
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express the spot rate r(m) as:

r(m) = 1/m

∫ m

0

f(s)ds

= β0 + (β1 + β2)
[
1 − exp(−m/τ)

]
/(m/τ)

− β2exp(−m/τ). (2)

Traditionally, adding an error term, we apply
nonlinear least squares (NLS) or maximum likelihood
estimation (MLE) for this equation:

r(m) = β0 + (β1 + β2)
[
1 − exp(−m/τ)

]
/(m/τ)

− β2exp(−m/τ) + ε(m), ε ∼ N(0, σ2
ε ),

(3)

where ε is assumed to be independently and
identically normally distributed. However, ε(m)
possibly has serial correlation and heteroskedasticity
because r(m) does not generate only at time m
but through the time period [0, m). To provide an
explanation about serial correlation in the error term,
we denote the spot rate on the remaining period until
maturity mi as r(mi), mi > mi−1 at i > i − 1
and r(m0) = r(0) = 0. Then, ε(mi) and ε(mi−1)
are possibly correlated because the time windows of
εmi and εmi−1 are overlapping for [0, mi−1). The
variances of the estimated parameters are undervalued
and the possibility of rejecting a true null hypothesis
rises when we use NLS and MLE for (3).

Therefore, we specify the error term in the estimating
model for the spot rate. We assume the following
process based on the NS model to describe the
instantaneous forward rate:

f(m) = D(m) + σdW (m), (4)
D(m) = β0 + β1exp(−m/τ) + β2(m/τ)exp(−m/τ),

where D(·) is expressed by (1) and σ is a constant and
W (·) is a standard Brownian motion process. When
we consider estimation of the NS model, adding the
instantaneous error term to the instantaneous forward
rate model is a more natural and simpler specification
of the estimating equation than (3). Then, spot rate
model is given by:

m · r(m) =
∫ m

0

D(s) + σ

∫ m

0

dW (s). (5)

We describe the difference between mi · r(mi) and
mi−1 · r(mi−1) as follows:

mi · r(mi) − mi−1 · r(mi−1) =
∫ mi

mi−1

D(s) + νi,

(6)

νi = σ
(
W (mi) − W (mi−1)

) ∼ N
(
0, (mi − mi−1)σ2

)
,

where νi is the error term that has properties of
independence and heteroskedasticity. ν does not
suffer from the serial correlation mentioned above by

the independent increment. The heteroskedasticity of
the error term also remains because the variance of νi

depends on the length of mi − mi−1. To cope with
this problem, we apply weight 1/

√
mi − mi−1 to (6)

in the estimation. Because the properties of the error
term are clearly identified, we can apply nonlinear
weighted least squares (NWLS) or MLE considering
the heteroskedasticity of the error term in (6). It might
be obvious that (6) is a more natural form than (3)
for estimation of the NS model. In the next section,
we compare the estimates of the parameters and the
shapes of the instantaneous forward rate and yield
curves using NWLS for (6) to those using MLE for
(3).

3 EMPIRICAL ANALYSIS

We use the Japanese Yen Tokyo interbank offered
rates (TIBOR) as r(m) in (3) and (6) because,
by definition, TIBOR are free from coupon effects.
TIBOR for m one week and from one month to one
year are traded in the Japan Offshore Market. The
sample period of the TIBOR data covers the period
from August 2000 to December 2005. We focus on a
sample period for which fluctuations in TIBOR can be
characteristic because we examine relative estimates
of the parameters and shapes of the yield curve in
various cases.

We select six days within the sample period and
describe these results in detail. July 3rd, 2000 (first
row in Tables 2 and 3) is the last stage of the
zero interest rate policy in Japan. TIBOR at one
week maturity is 0.076 percent, that is, it declines to
virtually zero. TIBOR at one year maturity takes a
larger value, 0.372 percent, than at one week maturity.
On August 28th, 2000 (second rows) the Bank of
Japan ended the zero interest rate policy. TIBOR
at one week and one year maturity where 0.343
percent and 0.491 percent respectively, following their
response to the change in monetary policy. However,
a reverse yield in TIBOR was observed on December
26th, 2000 (third rows) because analysts forecasted
a recession in the future reflecting that growth in the
U.S. economy had decelerated from the end of 2000.
TIBOR at one year maturity is 0.585 percent, which
is smaller than 1.263 percent at one week maturity.
August 8th, 2002, July 14th, 2004 and December
10th, 2005 (fourth to sixth rows) are the stages of the
quantitative monetary easing policy enforced at the
end of 2001. The quantitative monetary easing policy
caused a reduction in interest rate volatility and kept
the level of interest rates constant. These TIBOR from
one week to one year are around 0.05 to 0.12 percent.
It is noted that the fluctuation of TIBOR in the first and
third rows are relatively volatile in the sample periods;
the differences of TIBOR at one week and one year in
each period are 0.295 and -0.677 percent, respectively.
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Table 2. The parameters estimated by MLE for (3)

β0 β1 β2 τ
2000/07/03 0.436 −0.361 0.000 0.200

(25.65) (-24.01) (0.01) (2.63)
2000/08/28 0.568 −0.226 0.000 0.394

(25.81) (-11.89) (0.01) (1.57)
2000/12/26 0.565 0.889 −0.694 0.075

(62.78) (37.04) (-9.38) (10.71)
2002/08/05 0.123 −0.076 −0.071 0.070

(17.57) (-4.00) (-0.87) (1.25)
2004/07/14 0.129 −0.082 −0.062 0.090

(25.80) (-8.20) (-1.38) (2.14)
2005/12/10 0.130 −0.084 −0.055 0.069

(43.33) (-10.50) (-1.28) (2.56)

Note: The values in the parentheses represent estimates of
t-statistics.

Table 3. The parameters estimated by NWLS for (6)

β0 β1 β2 τ
2000/07/03 0.492 −0.371 −0.053 0.297

(11.71) (-6.60) (-0.09) (0.61)
2000/08/28 0.572 −0.226 0.001 0.394

(8.17) (-2.83) (0.01) (0.01)
2000/12/26 0.585 0.757 −0.758 0.100

(195.00) (39.84) (-31.58) (33.33)
2002/08/05 0.122 −0.070 −0.066 0.074

(42.67) (-2.81) (-0.99) (2.12)
2004/07/14 0.130 −0.082 −0.062 0.090

(32.50) (-3.15) (-0.83) (1.91)
2005/12/10 0.132 −0.082 −0.055 0.069

(33.25) (-3.00) (-0.65) (1.66)

Note: The values in the parentheses represent estimates of
t-statistics.

Tables 2 and 3 summarize the estimates of parameters
β0, β1, β2 and τ in (3) and (6). The signs of the
estimated parameters are consistent with theoretical
predictions for both MLE for (3) and NWLS for (6).
For instance, β0 and τ take positive values. Except
for the case of a reverse yield on December 26th,
2000, the negative estimate of β1 produces an upward-
sloping shape for the forward rate curve. It should be
noted that β1 is significant but β2 is not significant
in almost all of the cases. A reasonable explanation
for these results is that the fluctuations of TIBOR
until m equals one year are strongly influenced by the
second term in (1), which represents the contribution
of the short-term components on the forward rate
curve. We find that the probabilities of not rejecting
the null hypothesis in (6) are totally larger than those
in (3) because the standard errors of the estimated
parameters in (3) are possibly underestimated.

Figures 2 and 3 plot the spot rate curves and the
instantaneous forward curves. The spot rate and the
instantaneous forward curves in the first period (first
row in Tables 2 and 3) have different shapes from
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Figure 2. Fitted yield curves by MLE for (3) and
NWLS for (6).

(3) and (6). We find the fitted yield curve of (6)
is better/worse than that of (3) when the number
of months to settlement is long/short. β0 and τ
using NWLS for (6) are larger in value than those
using MLE for (3) and the values of β1 are negative.
Therefore, the instantaneous forward rate curve using
NWLS for (6) makes the slope more gentle and
converges to a larger value in the long run than MLE
for (3). In the third period, the instantaneous forward
rates in (3) and (6) fall until two months and increase
afterwards. This U-shaped curve is also implied by
the significant and negative estimates of β2 using
MLE for (3) and NWLS for (6). The instantaneous
forward rate curves in other periods are almost the
same shape for (3) and (6). From these results, we
find that the shapes of the instantaneous forward rate
curves change depending on different specification of
the error term such as (3) and (6) when the fluctuations
of the interest rate are volatile. In other words,
it is important to consider the specification of the
error term carefully when we investigate the statistical
properties of the yield curves or instantaneous forward
rate curves.
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Figure 3. Fitted instantaneous forward curves by
MLE for (3) and NWLS for (6).

4 CONCLUSIONS

In this paper, we specify the properties of the error
term in the spot rate model transformed from the
NS model by adding an instantaneous error term to
the instantaneous forward rate model. By taking the
difference of the i-th and i − 1-th spot rate models,
the model does not suffer from serial correlation of
the error term and its statistical properties are clearly
represented. This specification about the error term
does not lead to incorrect estimation methods, that is,
it is only necessary to apply nonlinear weighted least
squares to the spot rate model. In some empirical
examples, we estimate the instantaneous forward rate
curve on TIBOR by applying the proposed method.
First, the estimated parameters are similar to those
using traditional maximum likelihood estimation.
However, the shapes of the instantaneous forward rate
curves are different when the fluctuations of interest
rates used in the estimation are volatile. Second,
the probabilities of not rejecting the null hypothesis
that the parameter is equal to zero in our estimation
method are totally larger than those using maximum
likelihood. Therefore, we should carefully specify the
error term and select the proper estimation method for
the NS model.
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Söderlind, P. and L.E.O. Svensson (1995), ”New
Technique to Extract Market Expectations from
Financial Instruments.” Journal of Monetary Eco-
nomics, 40, 383-430.

Steely, J.M. (1991), ”Estimating the glit-edged term
structure: Basis splines and confidence intervals.”
Journal of Business, Finance and Accounting, 18,
512-529.

Vasicek, O. (1977), ”An equilibrium characterization
of the term structure.” Journal of Finance, 5, 177-
188.

Vasicek, O.A. and H.G. Fong (1982), ”Term struc-
ture modeling using exponential splines.” Journal
of Finance, 37, 339-356.

918


	Introduction
	MODEL
	EMPIRICAL ANALYSIS
	CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES



