
Figure 1. Asset Protection Simulator

Figure 2. Go*Team Simulator

Figure 3. Mind Storm Simulator

A Simulation Framework
Jagiello, J. 1, Eronen, M.1

1 Defence Science and Technology Organisation, Canberra, Australia
Email: jerzy.jagiello@dsto.defence.gov.au, marko.eronen@dsto.defence.gov.au

Keywords: simulation, modelling, robotics, framework, software

EXTENDED ABSTRACT

Simulation models of complex systems can be
implemented as stand-alone applications dedicated
to a particular domain with dedicated and
optimised GUIs and supporting tools.
Alternatively, the same effect can be achieved by
building a generic simulation framework and then
implementing the simulation model as a specific
instance of that framework. Our framework, build
primarily as a testing environment for robotic
applications, consists of the repository store and
the set of controllers: internal, rule module,
tapestry, sensor, output. It follows the standard
client server model where the clients store their
private states and the server is a repository of
shared states for simulation entities and the
environment. From the simulation framework
point of view, an environment is a collection of
entities that are not the focus of a simulation
experiment but necessary aid for conducting such
an experiment. Rules are used to enact basic
changes to the entities within the environment. An
emergent behaviour can be observed by the
execution of a collection of rules on the
environment. The server is the placeholder and
distributor of information supplied to entities
through their sensor components. Sensors are used
to provide entities with a transformed or
incomplete perception of the environment,
resulting in the entities exhibiting variant
behaviour. To allow for flexibility in the way
simulation experiments are designed selected
components can be reused, extended or redesigned
by application developers. In order to overcome

limitations of computing resources a distributed
rule module protocol has been introduced as well.
This paper will present three different types of
applications to show the utility of the framework.
For example, in the distributed Go*Team game
(Figure 2) the players, instead of robots, played a

game across the network. In the asset protection
scenario (Figure 1) simulated robots, as well as
their control, were supervised by the framework
itself. For the mind storm application (Figure 3) a

physical as well as a simulated robot were
controlled in an open loop by one application
which was sending commands to a simulator as
well as the robot itself.

The rationale behind the design and development
of such a framework are presented in this paper
together with the distributed rule module protocol
for parallel processing of mathematical models.

805

)(kTkU Δ
r

 Rule
Controller

Tapestry
Controller

Internal
Controller

Output
Controller

.

.
Entity M

)(kM TkX ΔΩr

Entity 1
)(1 kTkX ΔΩr

Repository Store
)(kTkX Δ

r
;)(*

kTkX Δ
r

Sensor Controller

)(1 KTkY Δ
r

)(*
KTkX Δ

r
)(KTkX Δ

r

)(1 kTkU Δ
r

)(kM TkU Δ
r

)(KTkY Δ
r

)0(X

r

)(KTkX ΔΩr

)(KM TkX ΔΩ

)(kTkU Δ
r

)(KM TkY Δ
r

Figure 4. Simulation Framework Conceptual Model

)(1 KTkX ΔΩ

1. MOTIVATION

In recent years there has been an explosion of
research and
development
activities
dedicated to the
design and
development of
simulation
frameworks,
especially for
real time robotic
applications
(Yeo et al. 2004,
Xavier et al.
2002, Yalcin et
al. 2005). When
authors of this
paper started
looking for a
simulator to test robotic middleware in 2000 the
only suitable platform was UMBRA from Scandia
(Gottlieb et al. 2001, Jagiello et al. 2006).
Unfortunately, due to export restrictions it was
impossible to acquire any technical information
regarding the architecture and design not
mentioning the software itself. It was decided in
2001 to embark on research activities to design and
develop a high performance simulator which
allows the testing of robotic applications in
“virtual reality” where the dynamics of the robots
were simulated by a simulator but control of the
robots was performed outside the simulator across
the network by robotic applications running on
stand alone PCs or robots themselves. It was
necessary to have a development environment
where applications can be developed and tested
outside a hardware platform and later transferred
without any modifications to a target system. The
fundamental requirement for a simulator was the
ability to construct ad hoc a variety of robotic
applications while not being constrained by
functionality or/and specific domain requirements.
It was necessary to design a platform with an
application programming interface which allows
the design of simulation experiments in a similar
manner to the way the IT development community
have been using object oriented languages such as
C++ or Java. Thus the solution was a simulation
framework for the rapid design and
implementation/deployment of various
applications which have to be built according to
the API framework to take advantage of already
existing mechanisms which otherwise would have
to be developed from scratch.

2. FRAMEWORK MODEL

The simulation framework can be represented as a
non-linear discrete system as depicted in Figure 4.

Usually some element of the experimentation
scenario becomes the major focus, while other
elements constitute only the stimulus for entities of
interest to respond. This stimulus is usually
modelled as an environment which plays a role of
virtual reality for embodied agents like humans
and robots, and a natural environment for synthetic
agents like software agents. In order to sense the
environment, a sensor mechanism is necessary to
feed the entity or group of entities with
information that represents the perceived state of
the environment. Sensors provide a way of
transforming the “complete and true” state of the
system into a perceived state for the entity. Entities
can be physical or artificial, distributed across the
network or local, and they can be stationary or
mobile. They may be internal or external to the
framework. An external entity can dynamically
register with the framework and become a part of
the simulation experiment as in a typical client
server paradigm. Entities can interact with each
other and the environment in real time or simulated
time. Therefore entities are conceptual holders of
their own state and define the agent. By agent we
mean humans, computer programs, and robotic
devices. To allow for definition of relationships
between entities the rule module concept has to be
introduced. The simulation framework represents a
typical client server model where clients maintain
their private state, and the server is a repository of
shared states for all internal and external entities as
well as the environment.

The Repository Store represents the true state of
the system and has been introduced to maintain
and preserve a consistent state of all entities taking
part in the simulation. It is responsible for holding

806

the compound state of the system independent
from the private and perceived states of individual
entities. In order to maintain this state it is
necessary for the simulation framework to have
dead time where access by entities to their sensory
information will be blocked in order to preserve a
consistent view of the environment. In order to
achieve this a simulation framework can be in one
of two exclusive phases: the access phase where
entities can enquire about the state of the
environment and the deny phase where access is
denied in order for a simulator to transition into a
new state. Reflection is the simulation
framework’s method of ensuring that the private
repositories of agents are synchronised with the
global state repository. It guarantees that any
agent accessing information from its own local
repository will have an accurate state that is in
sync with the simulation cycle. However, before
the simulation framework can update the states, it
must have a list of registered states that it should
monitor. Private repositories can register states
with the global state repository to receive
synchronisation updates. Once registration is
completed, the state repository identifies all
changed states and propagates the changes to the
private repositories at the end of every simulation
cycle. Agent registrations are taken at the access
phase while reflection happens as the last stage of
the deny phase (see details below). The state
vector)(kTkX Δ

r is controlled by the non-linear state
transition function f

rr =
)),(,)1((KKKRRMMTM TkTkUTkXfff Δ−ΔΔ− τ

rrr
o

r
o

r where
)),(,)1((KKKRMM TkTkUTkXf Δ−ΔΔ− τ

rrr - rule manager state
transition function,)),(,)1((KKKTM TkTkUTkXf Δ−ΔΔ− τ

rrr -
tapestry state transition function,

)),(,)1((KKKR TkTkUTkXf Δ−ΔΔ− τ
rrr - internal reasoner state

transition function,)(kTkU Δ
r =)(:: 1 ki

M
i TkU Δ=

concatenation of input vectors from entities,
⊆ΔΔΔ)()()(TkXTkXTkX RTMRMM

r
U

r
U

r
)(kTkX Δ

r
 and

the residual is defined as follows:
)(kTkR Δ

r =)(kTkX Δ
r / ()()()(TkXTkXTkX RTMRMM ΔΔΔ

r
U

r
U

r)

The Rule Controller manipulates
the =Δ)(kRMM TkX

r
)),(,)1((KKkRMMRMM TkTkUTkXf ΔΔΔ−

rrr
states and is responsible for modelling of non-
linear interactions between entities in order to
modify or overwrite the entities’ own states. The
rule modules represent the laws of the society that
take precedence over the laws of individuals which
may in some circumstances contradict each other.
In order to reason about the appropriate laws and
the order of their application an arbiter is necessary
which in our case is called the rule module
manager.

The Tapestry Controller manipulates the
=Δ)(kTM TkX

r
)),(,)1((KKkTMTM TkTkUTkXf ΔΔΔ−

rrr states
and is responsible for creating, destroying, and
manipulating both entities and rule modules.

The Internal Controller manipulates the
=Δ)(kR TkX

r)),(,)1((KKkRR TkTkUTkXf ΔΔΔ−
rrr states and

allows for direct manipulation of entities from
within the framework on the contrary to the
external agents who can indirectly manipulate the
state of entities.

The Sensor Controller – converts the “true” state
=Δ)(kTkX

r
)),(),)1(((kkk TkTkUTkXf ΔΔΔ−

rrr into the perceived
state =Δ)(*

kTkX
r

))((kX TkXS Δ
rr

r of the simulator. The true
state)(kTkX Δ

r of the system is filtered out by the
sensor controller and the perceived state

)()()(*
KKOK TkXTkXTkX ΔΔ=ΔΩ U

rr is stored and
maintained by the external agents
where)()(KKO TkXTkX Δ⊆Δ

r the observable state of the
system, =Δ)(*

kTkX
r

))((kX TkXS Δ
rr

r perceived subset of
the system state,)()()(*

KKOK TkXTkXTkX ΔΔ=ΔΩ U
rr state

of the system available for all external reasoners
where: ⊆Δ)(KO TkX

r
)(kTkX Δ

r state available for all
external reasoners,)(*

KTkX Δ
r =))((kX TkXS Δ

rr
r state seen

by all sensors,)(1 KTkX ΔΩ …..)()(*
kKM TkXTkX Δ⊆ΔΩ r

state of the system available for the external
reasoners,)()(,1 KKiMi TkXTkX Δ⊆Δ∀ ΩΩ

=

rr where

)(Ki TkX ΔΩr state of the system available for an i
entity

The Output Controller – coverts the state
)(kTkX Δ

r
into the output defined as

)),(),(()(kkkk TkTkUTkXhTkY ΔΔΔ=Δ
rrrr

The Entity 1 to M (M = number of entities) –
stores perceived state and generates the input
vector)(ki TkU Δ

r in order to propose change in the
state of the simulator. These inputs can be
postponed or accepted by the simulator. It is
achieved by introducing two phased scheduling
system. A simulator can be in the access or deny
phase. While in the access phase it will accept
requests for change of state or access to data.
Whilst in the deny phase requests are delayed until
change of state is completed. During the deny
phase all submitted requests for change of state are
processed including internal, rule, tapestry, output
and sensory controllers. This process can be
represented as depicted in Figure 5.

807

 One simulation circle cTΔ is the amount of time it
takes to move simulator to a new state as follows

CTΔ = τ+Δ AT , ATΔ - allocated time for
submission of requests to change the state of a
simulator represented by the U

r
 vector, τ -

variable time that defines the necessary time to
calculate and update the state of the simulator
which is a function of dynamically calculated state
transition functions),,(RRMMTM fff

rrr
τ plus time

necessary to update private repositories of external
entities. The simulation time step has no impact on
τ under the condition that the numerical accuracy
of simulation is excluded from our considerations.
The τ = max (SRS TT

Min
ΔΔ ,) where

MinSTΔ - min
allocated time to complete state change of the
simulator,

SRTΔ - actual time to complete state
change of the simulator. As it is not difficult to
predict that the processing of state transition
functions is the most critical and computer
intensive process during the deny stage of the
simulation cycle. The complexities of some
models are so overwhelming that sometimes it is
not possible to process them in an acceptable time
frame due to limitations of computing power. Due
to the numerical characteristic of some models or
numerical accuracy requirements some numerical
algorithms may need to be changed on the “fly”
between the simulation cycles. Another aspect is
the complexity of model structure and order of
processing models in order to guarantee data
integrity. Processing order is often dynamic and
driven by the nature of the simulated processes.
Response time and the ability to simulate complex
mathematical models is sometimes a critical factor.
Parallel processing of some models can improve
the overall performance of the simulation process
under the condition that there is no
interdependency between data generated by
different models. Distribution of models between
many computers can improve performance
significantly under the assumption that network
delays are negligible and the dependency of data
can be mitigated. The HLA protocol has been
proposed as a solution to interoperability issues

between different
models with no
regard to
optimisation of

computer
resources across
the network and

numerical
accuracy

requirements
(Kuhl et al. 1999).
Our proposal is an
attempt to address
this issue by

introducing the Distributed Rule Module Protocol.
Now we describe some ideas behind such a
protocol.

3. DISTRIBUTED RULE MODULE
PROTOCOL

Processing mathematical models locally is as
simple as calling local solvers in the order defined
by the rule module manager during the execution
of a simulation cycle (see Figure 6). Sequential
order of execution is reinforced by the blocking
method call. Although models are executed
sequentially one after another there is the
possibility of changing the processing order by

reordering or introducing a token that can “travel”
between them. If we physically place models on
separate computers then we need to inform the
distributed frameworks when to start processing
their models and in what order. A data structure
representing a tree of relationships between rule
modules will constitute the content of that token
that will travel between computers and activate
calculation of an appropriate model at every stage
of a simulation cycle. Details of the protocol can
be found in Jagiello et al. 2006.

A distributed simulator is a network of fully
functional simulators hosting their own processing
components. Each individual simulator will

)(kTkU Δ
r

Internal Controller
Rules Controller
Tapestry Controller
Sensors Controller
Reflection

CTΔ

Entity 1 to M

Deny Phase

Access Phase

τ

ATΔ

time

k

k+1

Figure 5. Framework Access/Deny Phase

Figure 6. Processing Models on Local Computer

Model A

Model B

Rule
Module
Manager

Invisible
Token

Invisible
Token

Invisible
Token

Local Computer

Simulation Loop

End of simulation
 cycle Model C

808

End of

Framework
Model A

Framework
Model C

Framework
Driving
Simulation
Loop Across
the Network

Simulation
Loop

Framework
Model B

Model D

Remote Computer

Model E

Remote Computer
End of simulation cycle

Remote Computer

Figure 7. Processing Models on Distributed Computers

become a part of the whole distributed repository
store. Only one simulator at the time will drive the
simulation cycle across the network. The simulator
responsible for driving a simulation cycle can be
selected dynamically from the set of participating
simulators. The simulator responsible for driving
the simulation loop will generate a set of tokens
that are sent to selected simulators across the
network. These tokens represent independent
branches of the tree or data sets that can be
processed in parallel by distributed computers. The
distributed computers will process their models
according to a defined pattern, and a returning
token will be sent back to resume the next
simulation cycle. This pattern represents the tree
structure of distributed rule modules and numerical
requirements and process by which numerical
results are acquired. New tokens will be generated
dynamically when processing parameters have to
be changed. The tokens will contain only the
differences in the configuration of processing
parameters. The order and hierarchy of models to
be processed will be determined by a dynamically
configurable table defined inside the token. A
token or set of tokens has to be returned back to
the rule module manager responsible for driving
the simulation loop in order to complete the
simulation cycle as depicted in Figure 7. The
framework infrastructure and its API was
implemented in Java and published in Jagiello et
al. 2006.

4. APPLICATIONS

The framework infrastructure has been mainly
used as a prototyping tool for testing robotic
applications. Although, recently it has been
deployed for a distributed gaming application
called Go*Team played across the network. This

paper will present three different types of
applications to show a utility of the framework.
Namely, they are:

1. The Asset Protection scenario

2. The Mind Strom application

3. The Go*Team game

The Asset Protection scenario simulates the
Mobile Detection Assessment Response
System (MDARS). The MDARS is a robotic
system for physical security and automated
inventory of high-value or critical assets
(Carroll et al. 2006). The scenario for the asset
protection application is very simple. A group
of defenders are protecting an asset by
patrolling a confined area. Intruders appear
randomly and attempt to destroy the asset. The
defenders in order to destroy intruders have to
inform each other about the encroachment and
collaborate to surround and destroy the
intruder. The defenders have a limited level of
health and have to visit the “hospital” from
time to time in order to repair damage inflicted

by intruders. The defenders based on the current
circumstances have to calculate their own goals
and make a decision about when to engage in
patrolling, pursuing, fighting or damage repair
activities. The asset protection implementation
model can be represented as depicted in Figure 8.
The asset protection scenario is comprised of the
following entities and their objectives (Figure 9).

Defender, Intruder
Asset, Hospital

Defender 1

Asset Protection Entities: Defenders,
Intruders, Asset, Hospital

.

.

.

Defender n

)(Pr TkeAction Δ

)(Pr TkeAction Δ

Sensor Manager : Hospital Detect, Asset
Detect, Intruder Detect

Rule Module Manager:
Drive, Shoot, Heal

Tapestry Manipulator: Spawn
Intruders, bury The Dead

 Intruder,
 Defender

Hospital Position
Asset Health
Intruder Position

Figure 8. Asset Protection Implementation Model

809

Hospital

Assets - represent the critical infrastructure. Assets
are stationary and are assigned a health value.

When their health value reaches zero, the asset is
destroyed. In the simulation, assets are represented
as black domes.

Hospital - were added to heal and replenish
defenders. For a defender to be healed, they must
be within range of the hospital. Hospitals are
stationary and cannot be destroyed. Hospitals are
represented in the simulator as a white cube with a
red cross on the roof.

Intruders - are entities whose sole objective is to
destroy the asset. Intruders are mobile and can
‘shoot’ (reduce the health of) any entity within
their range. Intruders must move to the asset to
destroy it. Intruders can destroy defenders, but
their primary role is to destroy the asset. Intruders
have a health, which when is zero, results in the
intruders being destroyed. There are no limits to
the number of intruders and intruder will appear
randomly. Intruders are represented as black jeeps.

Defenders - Defenders are responsible for
protecting the asset. This means that the defenders
will have two tasks to perform; to patrol around
the asset to ensure that no intruders are present,
and to repel and destroy any intruders that are
attacking the asset. Including their personal goal of
survival, the following is a list of goals and
objectives for the defenders.

PATROL – Patrol the asset to discover intruders.

ATTACK – Close in and destroy any intruders.

DEFEND – Return to the asset and protect it from
attacking intruders.

HEAL – When health is low, move to the hospital
to be healed.

Defenders are mobile, with a health and a range for
its attack. When its health is zero, the defender is
destroyed. There are only a fixed number of
defenders in the simulation. Defenders follow
different patrol paths to increase the coverage and
protection of the asset. Defenders are represented
as green jeeps in the simulator.

In the Mind Storm application a physical robot and
its model is controlled simultaneously by one
robotic application. The rigid body model has been
used to model a robot by the simulation framework
in order to respond in real time to control
command from the application (Baraff 1989). See
picture of real and simulated robot (Figure 10).

The Go*Team game was implemented as a
multiplayer network computer game using our
framework (Jagiello et al. 2007). Physically
dispersed teams with individual players will play
against each other. Teams can form alliances to
simulate coalition forces. A game can be played by
many teams on many boards with a limited
number of allocated resources (stones). In order to
introduce the “fog of war” each player can see

Figure 10. Mind Storm Simulator

Figure 11. The global Go*Team Situation
Awareness (viewed via the server).

Figure 9. Asset Protection Simulator

Intruder Defender

Asset

Hospital

810

only the partial state of the game while only the
game host can enjoy the full view of the game
(Figure 11, 12, 13).

5. CONCLUSIONS

The developed infrastructure and its API’s seem to
be very effective tools especially for prototyping
purposes. Interfaces provided by the framework
and supporting infrastructure allows for an
effective way of developing a variety of simulation
models from different domains.

6. AKNOWLEDGMENTS

The authors are grateful to Nicholas Tay for his
contribution to the development of concepts and
ideas and his participation in the implementation
phase of the Simulation Framework.

7. REFERENCES

Yeo, S., J. Kim, S.H. Lee, F.C. Park, W. Park, J.
Kim, C. Park, I. Yeo (2004), A modular
object-oriented framework for hierarchical
multi-resolution robot simulation, Robotica,
Cambridge University Press New York,
NY, USA, Volume 22 , Issue 2, Pages: 141
- 154

Xavier, P.G., E. Gottlieb, M. McDonald, F.J.
Oppel, J.B. Rigdon (2002), The Umbra
Simulation Framework as Applied to
Building a Federates, Proceedings of the
2002 Winter Simulation Conference.

Yalcin, A., R.K. Namballa (2005), An object-
oriented simulation framework for real-time
control of automated flexible
manufacturing systems, Computers and
Industrial Engineering, Pergamon Press,
Inc. Tarrytown, NY, USA, Volume 48 ,
Issue 1, Pages: 111 – 127

Gottlieb, E., R. Harrigan, M. McDonald, F. Oppel,
P. Xavier (2001), The Umbra Simulation
Framework, Intelligent Systems and
Robotics Center Sandia National
Laboratories, SAND2001-1533 Unlimited
Release.

Jagiello, J., N. Tay, M. Eronen (2006), A Robotic
Middleware, DSTO-TR-1824.

Kuhl, F., R. Weatherly, J. Dahmann (1999),
Creating Computer Simulation Systems: An
Introduction to the High Level
Architecture, Prentice-Hall International,
ISBN 0-13-022511-8.

Jagiello, J., N. Tay, M. Eronen (2006), A
Simulation Framework, DSTO Report.

Carroll, D., H.R. Everett, G. Gilbreath, K. Mullens
(2006),Extending Mobile Security Robots
to Force Protection Missions, Space and
Naval Warfare Systems Center, San Diego,
http://www.spawar.navy.mil/robots

Baraff, D. (1989), Analytical methods for dynamic
simulation of non-penetrating rigid bodies”
Computer Graphics (Proc. SIGGRAPH),
volume 23, pages 223–232.

Jagiello, J., M. Eronen (2007), Go*Team, an
instance of the simulation framework,
MODSIM Conference, Christchurch, NZ.

Figure 12. The local view of one of the two
black players, who can see only their own
stones plus those stones of white that are closer
to their own stones than those of any other
player on the black team.

Figure 13. The local view of one of the other
black players

811

