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EXTENDED ABSTRACT  

Natural resource managers need to asses the 
impacts of different natural resource management 
scenarios. Increasingly, models are used to 
support and communicate this complex trade-off 
process. One of the principle motivations for 
natural resource management (NRM) is to 
improve or protect the environment. However, 
our capacity to model a multi-faceted ecological 
response in rivers has been limited to single 
implementations.  

We present an ecological response modelling 
(ERM) framework to support this NRM process. 
The ERM framework is constructed in Microsoft 
.Net using The Invisible Modelling Environment 
(TIME) which provides the capacity for the tool 
to be interoperable with the e2 catchment 
modelling tool. This integration permits the 
ecological consequences of land management 
changes to be modelled simultaneously with 
predicted hydrology and nutrient changes. 

The ERM framework is based on a library of 
models of ecological response. Each model 
contains a mathematical function that transforms 
input time series of drivers into an output time 
series representing the response variable. The 
simple architecture which constrains the input and 
output to a single data type allows modularity 
such that models can be nested, combined into 
larger compound models or called by 3rd party 
modelling applications.  

The library of ecological response models has 
been configured to allow local (personal computer 
based) stand alone models or collections of 
models as well as an online library of models 
which may be downloaded and reused or 
modified for specific application. 

A key feature of each model within the ERM 
framework is the meta information. The collective 
meta information constitutes a ‘confidence’ schema 
and includes a confidence scoring system based on 
the underlying source, the data and interpretation 
required to generate the numerical function. The 
confidence score is presented in the output to 
provide context and supports the interpretation of 
numerical predictions.  

The history or lineage of each model is recorded 
along with the model author and the authors of 
parent models from which it has been built. 
Furthermore, the spatial applicability of each model 
is recorded as well as any other words of warning 
about appropriate application of the model. The 
final information provided by the confidence 
schema is an overall summary of the model that 
describes context, such as the reason for model 
development and the ability to link any associated 
information such as reports or web pages. Providing 
such information in these different forms allows an 
assessment of the appropriateness of the model 
application and robustness of the underlying 
science 

The ecological response modelling framework 
allows for a range of modelling approaches and 
adopts a good modelling practice approach by 
clearly representing the underlying science used to 
develop each model. The models can be made 
available to the broader modelling community via a 
shared library of ecological models. The intent is 
that this mechanism of publishing the associated 
meta information along with model functions will 
provide a greater level of transparency in ecological 
modelling, discourage improper model use and 
highlight areas of key research need.  
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1. INTRODUCTION 

Modelling is increasingly being applied to the 
assessment of natural resource management 
scenarios to prioritise investment, assess policy 
options and plan for long term impacts such as 
climate change. Physical process models such as 
hydrologic and sediment and nutrient transport 
models have been applied for many years to 
support this process. Examples include the 
application of SedNet to the Great Barrier Reef 
catchments (Bartley et al. 2007), or the Integrated 
Quantity Quality Model (Podger 2004) for 
hydrologic modelling in New South Wales and 
Queensland.  

Natural resource managers are increasingly 
required to consider the ecological consequences 
and tradeoffs of alternate strategies. A good 
example is in the field of water allocation and 
management where the environment is recognised 
as having critical water needs. The process of 
quantifying those environmental water needs and 
assessing the ecological implications of alternate 
water management scenarios is a key area for 
linking physical process models (hydrology) to 
ecological response. The mechanism of doing this 
is mostly on a piecemeal, project by project basis, 
with a heavy reliance on expert panels to assess the 
ecological outcomes of alternate scenarios 
(Cottingham et al. 2002). The expert panel process 
is timely but not transparent, nor are the results 
transferable to other locations or to new scenarios.  

In addition to predicting the ecological 
consequences of a given scenario, natural resource 
managers are also increasingly asked to consider 
simultaneously the implications of multiple NRM 
strategies such as considering the ecological value 
of different combinations of environmental flows, 
coupled with riparian revegetation and instream 
works. To support these decision making 
processes, NRM managers require a modelling 
capacity that allows physical process models to be 
integrated with quantitative models of ecological 
response. 

We have developed an ecological response 
modelling (ERM) framework to support the expert 
interpretation process. We will briefly describe the 
ERM framework followed by a more detailed 
discussion of the key challenge of adequately 
representing confidence in ecological models. 

1.1. The ERM framework 

The ERM framework is structured around a library 
of quantitative models used to predict ecological 

response represented as either a direct population 
change, or more commonly through a predicted 
habitat response to NRM activity. An example of 
modelling habitat change is to predict the change 
in pool habitat in a river under different water 
regimes. The ERM framework was initially 
envisaged to provide support for environmental 
water allocation in rivers, however it could be used 
to model other NRM activities. Several different 
types of numeric function can be stored in the 
ERM library, and these can be entered by any user, 
but would normally be entered by an aquatic 
ecologist due to the relatively complex aquatic 
systems understanding required.  

The core element of the framework is a ‘model’ 
(grey area in Figure 1) which receives input as 
daily time series (e.g. flow and temperature), a 
quantitative transformation is applied to the input 
(‘Function’ in Figure 1) and a daily time-step 
output time series is produced. This output time 
series usually represents habitat availability in 
response to the input time series such as a binary 
time series identifying if fish passage is possible 
on any given day. This daily time-step output time 
series is then summarised by a season of interest to 
produce an annual time-step time series. An 
example is the number of days in spring and 
summer when fish passage is possible. This annual 
time series is then further summarised across years 
to produce a single summary metric, which is 
usually done by averaging across the annual values 
to give a score for the scenario. The daily and 
annual time series can be visualised as an output as 
well as the single summary metric.  

A key element of this architecture is the capacity 
to include any style of numerical function which 
can take input data as time series and produce an 
output which can be represented as a time series. 
This time series based representation means that 
with identical data types as input and output, a 
generalised shell can be produced to allow models 
to be easily linked with each other and for 3rd party 
modelling software to easily call on an ERM 
model.  

The value of the ERM framework is enhanced if it 
can integrate with existing physical process 
models, such that the ecological consequences of a 
change in water or nutrients can be quickly 
determined. Because the ERM framework is 
written in the TIME framework (Rahman et al. 
2005) and it can be used as a ‘plugin’ to the e2 
catchment modelling environment (Argent et al. 
2005). 

792



 
Figure 1: Architecture of an ecological response 

model. 

1.2. Alternate numerical functions 

The framework can handle different kinds of 
numerical functions, including rating or habitat 
preference curves, hydraulic rules such as water 
depth and velocity constraints or formula-style 
functions for creating complicated functions and 
conditional statements (Marsh et al. 2007).  

In the future, the capacity to build truly networked 
models by joining several models will be 
incorporated. These networked models will allow 
feedback loops and time lags. An example of this 
type of application could be a population model for 
a fish which is built from several habitat-based 
component models such as a minimum depth to 
allow movement, pool habitat availability, 
minimum water temperature requirements and the 
timing of high flows which trigger spawning.  

2. MODEL CONFIDENCE 

One of the key facets of good model building is to 
ensure that model development appropriately 
represents the underlying science used in 
developing the model (Jakeman et al. 2006). 
Modellers tend to be inconsistent in the way in 
which this information is collated and presented. 
We have developed a schema (included as ‘Meta 
information’ in Figure 1) to manage the varying 
information required to adequately account for the 
broad range of supporting information that defines 
the underlying science of a model. This meta 
information is a critical part of the model and will 
be described here in some detail. 

The terms ‘risk’, ‘confidence’ and ‘uncertainty’ 
have some overlap in their interpretation. We have 
looked to the users of the ERM framework to 
guide us in the development of an appropriate 

system. During a 6 month trial project we asked 
the creators and users of published models about 
the importance of model confidence and how they 
would use the concept of confidence and 
uncertainty in a modelling context. This is an 
acknowledgement that for a successful 
representation of confidence we require it to be 
both useful for supporting end users in their NRM 
planning decisions and accurate in its 
representation of the science being presented as a 
model.  

For the decision makers (those that use model 
outputs to inform policy decisions), the concept of 
uncertainty is important when it affects the degree 
of confidence in the expected outcome of a 
decision (Refsgaard et al. 2007). It is particularly 
challenging for decision makers when the choice 
between alternate scenarios is clouded by 
overlapping error bounds or confidence intervals. 
An example would be the trade-off between 
allocating enough water to just wet a wetland each 
year compared to the value of delivering that water 
as an infrequent but large flood. The ecological 
consequences of more frequent lower volume 
events are known with more confidence than the 
value of a rarer large flood, simply because the 
rarity of these large events severely limits 
opportunity to research their impacts. In 
developing quantitative models to predict the value 
of either scenario it is important to convey the 
difference in the depth of science that underpins 
each model; the decision-maker needs to know 
whether any difference in model scenarios is 
indeed significant or whether uncertainty in the 
underlying science in fact overwhelms the 
modelled differences.  

Decision makers look not only to the depth of 
underlying science in a model but also to the 
confidence that scientists place in the model. This 
is often manifested as a degree of consensus 
among scientist in the most appropriate modelling 
approach. Hence, any developed schema needs the 
support of modellers as well as decision makers.  

Here the notion of uncertainty is more subjective 
than the traditional quantitative measures used for 
error propagation and statistical uncertainty 
analyses. Models in the ERM framework are 
certainly amenable to more formal uncertainty 
analyses, however it’s important to acknowledge 
that the underlying ecological modelling research 
is not at a stage of maturity where such 
quantitative analyses are routine or necessarily 
effective. This is because there is a high level of 
uncertainty surrounding the underlying model 
conceptualisation. For this reason, a rigorous 
review of the conceptual representation of a model 
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and the reputation of the scientist are important 
indicators of confidence for model users. 

For modellers involved in this project, their 
requirements for a confidence schema were 
consistently associated with the dangers of 
applying models inappropriately. A model is built 
within a specific context and modellers are 
justifiably uncomfortable when their models are 
taken out of context. However, modellers are keen 
for their research to contribute to NRM decision-
making processes. This apparent dichotomy can be 
resolved by providing appropriate contextual 
information with a model to encourage it to be 
applied within appropriate boundaries. A clear 
framework is needed to idenfity when a model has 
been applied outside its limitations. 

There is a wealth of literature that highlights the 
need for good modelling practice and for 
adequately handling of uncertainty, risk and 
confidence. The following taxonomy to describe 
sources of uncertainty was presented by Refsgaard 
et al. (2007) but is similar to those presented 
elsewhere: 

Context and Framing: The boundaries of the 
system to be modelled are not well described, such 
as the external economic, political and social 
circumstances that form the basis of model 
development. 
Input uncertainty: The uncertainty associated 
with input data such as modelled or measured flow 
and constituent data 
Model structure uncertainty: Uncertainty related 
to the theoretical understanding of the system 
being modelled. 
Parameter uncertainty: Uncertainties related to 
appropriate model parameterisation. 
Model Technical Uncertainty: Uncertainty 
arising from the coding of the model such as 
numerical approximations and necessary 
simplifications and lumping of some processes. 

We can further break each of these five uncertainty 
sources into two subcomponents; nature, and level. 
The two elements described as the nature of 
uncertainty by Walker et al. (2003) are; 1) 
Epistemic uncertainty, which is the uncertainty due 
to imperfect knowledge and can be resolved, or at 
least reduced, through a maturation of the science 
and 2) Stochastic uncertainty, which is due to the 
inherent variability in systems and is non-
reducible. For ecological modelling the separation 
and characterisation of these two key types of 
uncertainty is rarely possible because the data we 
use to verify a modelled representation represents 
a combination of the two. A second and critical 
component of uncertainty is the level of 

uncertainty which lies on a continuum between 
deterministic knowledge and total ignorance 
(Walker et al. 2003).  

We can now use the uncertainty sources and their 
underlying components to consider the elements of 
uncertainty incorporated in this schema. For 
ecological models, the key source of uncertainty 
lies firstly in model structure uncertainty where we 
are uncertain that the quantitative representation of 
the system or organism is an adequate reflection of 
reality. Although a well-recognised and 
acknowledged problem, means for handling 
conceptual and model structural uncertainty are far 
less developed than those for characterising other 
sources of uncertainty (such as parameter 
uncertainty or input uncertainty due to 
measurement error). We’re specifically interested 
in situations where there is a high level of 
uncertainty in the model structure and more 
broadly in epistemic uncertainty across all sources. 
In these situations it is generally not feasible to 
characterise uncertainty in a quantitative manner 
and there is need for other means of 
communicating it. The level of uncertainty in 
ecological models tends to fall in the category of 
recognised ignorance where we acknowledge that 
elements of the system are not necessarily well 
captured because our understanding is incomplete. 
At best our level of uncertainty could be described 
as scenario uncertainty; here we are confident in 
our ability to quantify uncertainty for the baseline 
case for which we have data, but we are 
uncomfortable with extrapolating to new scenarios 
where our underlying system representation may 
not hold.  

Based on the requirements of decision makers and 
model users and our understanding of the key 
limitations in confidence for ecological modelling 
we have devised a schema to capture these more 
qualitative aspects of confidence associated with 
each ecological model. The schema has two major 
categories of information. The first contains a 
systematic confidence scoring system based on the 
rigor of the underlying science to allow model 
users to compare across models and to allow 
model output to be tagged with a meaningful 
confidence score to inform interpretation. The 
second area allows the capture of contextual 
information to inform appropriate model selection. 
These two areas are described in more detail 
below.  

2.1. Confidence scoring 

We have devised a confidence scoring system 
based on the ‘Pedigree’ element of the Numerical 
Unit Spread Assessment Pedigree (NUSAP) 
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system described by Funtowicz and Ravetz (1991). 
The pedigree is the scientific status of the 
information developed through expert judgement 
based on set criteria (Van der Sluijs et al 2005). 
The scoring system is similar to the multiple lines 
and levels of evidence (MLLE) approach (Norris 
et al. 2005) whereby lines or categories of 
evidence are collated across multiple evidence 
sources. The MLLE approach differs from the 
NUSAP system in that it is a generalised system to 
be applied across any problem which allows the 
scores to be directly compared, where as the 
NUSAP system is generally tailored to a specific 
application.  

Our category system adopts the MLLE approach 
but is simpler to implement because it does not 
rely on a comprehensive literature review to 
complete. The ERM confidence scoring system is 
not a hypothesis testing procedure. We are not 
testing if a model is likely to be true by weight of 
evidence approach of randomly sampling an 
underlying population of potential information as 
you may do in the MLLE approach (Norris et al. 
2005). We focus here on gathering supporting 
evidence. Where there is contrary information, this 
can be presented in the caveats, or can be used to 
produce a competing model. 

The ERM confidence scoring system has three 
lines of evidence, and each line has three levels of 
scoring (Table 1). This scoring is applied across all 
evidence sources and then combined to give a 
single confidence score for each line of evidence.  

Table 1: ERM confidence scoring. 
Confidence Source 

(Where was 
the model 
published) 

Data (what 
is the data 
that 
underpins 
the model) 

Specificity 
(how 
specific is 
the 
published 
form of the 
model) 

High Peer 
reviewed 
publication 

Multiple 
sites and/or 
times 

No 
interpretation 
required  

Medium Non-peer 
reviewed 
publication 

Single site 
and/or time 

Some 
interpretation 
required 

Low Unpublished 
expert 
opinion 

No data 
expert 
judgement 

Major 
interpretation 
required 

We think that an explicit numeric representation 
based on data from a robust experimental design 
published in a peer reviewed journal constitutes a 
high level of confidence in the model. The method 
of aggregating confidence levels across different 
sources or evidence and combing lines of evidence 
should reflect this perception of high confidence. 

In many ways it would be preferable to keep the 
confidence scoring in its disaggregated form, as 
any form of aggregation is somewhat arbitrary 
(particularly given the qualitative nature of the 
scoring system). Some aggregation is desirable, 
however, if only to ensure that some indication of 
confidence can be communicated easily with 
model results. In choosing an aggregate scare, we 
wanted to ensure that all sources of evidence could 
be considered, whether published or not, and that 
those sources of information that scored well 
across all lines of evidence make a greater 
contribution to the overall confidence.   

We considered four alternative techniques for 
aggregating the confidence scores for each line of 
evidence across multiple sources of evidence. To 
illustrate the different techniques consider an 
example model with three key sources of 
information which have been used in the model 
development. The first is a peer reviewed journal 
paper that presents the concept of the system 
understanding but is data free, the second is a local 
unpublished study based on a sound experimental 
design and the third is the advice of an expert 
group generated via a workshop. Table 2 has the 
base confidence values presented for each 
information source across all three lines of 
evidence. The bottom half of Table 2 represents 
the results from the four aggregation techniques:1) 
take the highest of each confidence line; 2) take 
the lowest of each confidence line; 3) averaging 
the levels of evidence for each line of evidence; 
and 4) moderate the confidence line by the other 
lines that correspond to that piece of evidence 
(achieved by dropping the value of each element in 
a line of evidence by one score if an associated line 
of evidence is lower, and then the highest level of 
evidence for each line of evidence is adopted).  

The ‘single highest’ approach would provide a 
high confidence in this model despite there being 
no peer reviewed interpretation of the model and 
thus would overstate the confidence that we should 
have in the model. The ‘single lowest’ approach 
similarly understates the confidence in the model. 
The ‘averaging’ approach is difficult to present 
because representing a fractional value of a 
qualitative rating would overstate the precision of 
the approach. Rounding to the closest whole score 
appears reasonable for this example. A limitation 
of simple averaging for each line of evidence is 
that valuable sources of information that contribute 
across all lines of evidence are not provided any 
additional status. The ‘moderated approach’ 
weights more heavily the sources of evidence that 
contribute across all lines of evidence.  
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Table 2: Example of raw confidence data for each 
evidence source and alternate ways to summarise 
the results. ‘moderated’ scores parenthesised. 

 Lines of evidence 

source of 
evidence 

Source Data Specificity 

1) Peer reviewed 
paper 

High 

(Medium) 

Low Low 

2) Local 
unpublished 
study 

Low High 

(Medium) 

High 

(Medium) 

3) Data free 
expert panel 

Low Low High 

(Medium) 

Summary methods 

1) single highest  High High High 

2) single lowest  Low Low Low 

3) average 
(rounded) 

Medium Medium High 

4) Moderated  Medium Medium Medium 

At this point we have a confidence scoring system 
which can be reported for all three lines of 
evidence. An additional summary option is also 
provided to make the output clearer, whereby the 
confidence is aggregated across the lines of 
evidence by presenting the value for the line of 
minimum confidence. For this example the overall 
confidence would be medium. For this scoring 
system a high level of confidence can only be 
achieved if a single source of information scores 
highly across all three lines of evidence. A 
limitation is that this scoring system does not 
consider a ‘weight of evidence’ such as when 
consistent results from many poorly designed 
experiments could add weight or increase 
confidence in the conclusion. Future versions will 
consider adoption of a weight of evidence 
approach.  

2.2. Limitations and summary 

In addition to the systematic scoring of confidence 
we provide a structured mechanism to capture 
contextual information to inform model choice. 
Good model building practice requires that we are 
clear about not only where a model could or 
should be used, but also where it is inappropriate 
to use the model. There are two main model 
limitations which are recorded. The first is the 
spatial limitation of the model, whereby the spatial 
extent to which the model could be applied is 
presented. This is critical for ecological models 
that may be focused on plants and animals that 
have finite distributions, or where behaviour may 
vary in different regions. The second key field 

under limitations is ‘Words of warning’ where the 
model author can highlight known deficiencies and 
reviewers of the model can also contribute to these 
guidelines for using the model appropriately and 
wisely.  

A further concept which is captured is the lineage 
or ‘model history’. This is an acknowledgement 
that the lineage of a model, or how it has been 
incrementally refined and improved, is an overall 
contribution to the confidence that one has in the 
model prediction. For example, a model that is 
based heavily on the universal soil loss equation 
(Renard et al. 1991) provides the user with some 
confidence that the methods are well-established 
and widely accepted. The model history is tracked 
when any new model is created based on a copy 
and paste and modification of an existing model. 

As a part of the model history, the authorship of 
any model is also recorded. Authorship is a key 
tenant of scientific publication. A model is an 
extension of a person’s scientific work, and we 
consider it important to ensure authorship is 
acknowledged and remains associated with any 
future models that evolve from it. Authorship is 
not simply the author of the current model, but the 
authors of any parent models on which the model 
was based. 

An additional summary area of the confidence 
schema is provided primarily for capturing 
unstructured contextual information about a model 
such as the purpose or project for which it was 
developed. Any supporting or associated 
information can be linked to the model. An 
example may be a website describing where the 
model has been used or a schematic diagram of 
how the model is intended to work.  

3. CONCLUSIONS 

The ecological response modelling framework has 
been developed to support natural resource 
management organisations to make quantitative 
assessments of the ecological consequences of 
alternate scenarios of land and water management. 
The framework can be integrated with existing 
catchment modelling systems such as the e2 
framework to provide an ecological interpretation 
of the modelled changes in hydrology and nutrient 
delivery under different scenarios. The framework 
allows non-developers to enter models directly 
into the framework and contribute them to a web-
based library of models for reuse and refinement. 
The framework includes a comprehensive 
confidence schema that has been developed to 
support the concepts of good modelling practice, 
whereby the underlying science and the limitations 
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of a model are clearly presented. The confidence 
schema includes a confidence scoring system that 
is included as one of the model outputs; the 
intention is that this will help establish a practice 
of presenting both model results and confidence in 
that result. We readily acknowledge that the 
confidence schema represents a first attempt to 
require greater transparency and insight into model 
underpinnings in a way that is easy for end-users 
to adopt. The Ecological Response Modelling Tool 
will be available on the toolkit.net.au website and 
through the eWater CRC. 
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