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EXTENDED ABSTRACT

Due to recent flood events, risk assessment has
become a topic of highest public interest. The
definition of endangered or vulnerable areas is
based on numerical models of the water flow.
The most influential input for such models is the
topography provided as a Digital Terrain Model of the
Watercourse (DTM-W).

For capturing terrain data of inundation areas
Airborne Laser Scanning (ALS) has become the prime
data source. It combines cost efficiency, high degree
of automation, high point density of typically 1-10
points per m2 and good height accuracy of less than
15cm. For all these reasons ALS is particularly
suitable for deriving precise DTMs as basis for
Computational Fluid Dynamic (CFD) models. The
quality of such models depends crucially on how
well vegetation or other off-terrain objects have been
removed in the DTM generation process.

The task of removing off-terrain points from the
ALS measurements is commonly referred to as
filtering. Traditional laser scanners only supply
range measurements to the reflecting objects and,
thus, the filtering process has to rely on geometric
criteria. The latest generation of ALS systems
record the full backscattered waveform, from which
physical quantities like echo width and backscatter
cross section can be derived. An advanced filtering
technique based on the well established method of
robust interpolation is presented exploiting the echo
width for a more robust and reliable classification
of the point cloud into ground and off-terrain points
resulting in a more precise DTM-W. Besides filtering,
exact sensor calibration, fine adjustment of ALS-strip
data, proper fusion of ALS and additional river bed
data as well as elimination of random measurement
errors are important issues for generating a precise
DTM-W based on the ALS point cloud.

The higher DTM resolution provided by modern
sensors comes along with an increased amount of
data. Thus, a direct use of the high resolution
DTM-W as the geometric basis for CFD models is

impossible. Currently available mesh generators for
CFD models basically focus on physical parameters
of the calculation grid like angle criterion, aspect
ratio and expansion ratio. The detailed shape of
the terrain as provided by modern ALS systems is
often neglected. A DTM data reduction approach
is presented, considering both the physical aspects
mentioned above as well as the preservation of
relevant terrain details. The method starts with an
initial TIN-approximation of the DTM comprising
structure lines and a coarse grid. The TIN is
subsequently refined by adding additional grid points
until a certain height tolerance is met. A spatially
adaptive data density, where terrain parts being
sensitive for the CFD model are mapped with more
details than parts of minor importance, can be
achieved by introducing individual height tolerances
in the iterative refinement process. In order to obtain
a high quality computation grid the resulting surface
approximation is professionally conditioned to meet
specific hydraulic requirements.

Finally, practical results of CFD models based on dif-
ferent geometry variants are presented and discussed.
It will be shown that a very detailed description of the
topography can indeed be established in CFD models,
resulting in more realistic flow simulations and more
precise boundaries of potential flooding areas. An
example is shown in Figure 1.

Figure 1. Digital flood risk map of the river
Drau (Carinthia/Austria) resulting from a 2D-CFD-
simulation based on a high resolution ALS-DTM

731

mailto:gm@ipf.tuwien.ac.at


1 INTRODUCTION

ALS has become the prime data source for capturing
topographic data in the last years. It combines cost
efficiency, high degree of automation, remarkable
height precision and high point density. ALS is
especially well suited for capturing inundation areas
as well as river banks under low flow conditions and
is therefore widely used as data basis for CFD models
today.

However, the application of ALS poses problems as
well. Contrary to traditional manual data acquisition
techniques like stereo-photogrammetry or tachymetry,
ALS comprise both ground points and off-terrain
points on buildings, vegetation, power lines, etc.
The quality of the derived DTM and, consequently,
the quality of subsequent CFD modeling depends
crucially on how well off-terrain points have been
eliminated within the filtering process. Standard ALS
systems provide only range measurements (typically
first and last echo per pulse) and therefore the filtering
has to rely on geometric criteria only. In addition, the
recent generation of laser scanners also provides the
full backscattered waveform, which allows to deduct
physical quantities like amplitude, echo width and
backscatter cross section per echo. The combination
of geometric criteria and physical echo parameters
improves the reliability of the filtering (Doneus et al.
2007) and, thus, enhances the DTM. Another issue
besides filtering is the fusion of ALS and river bed
data. This involves the interpolation of river bed cross
sections, the determination of a water surface model
and the derivation of the water-land-boundary.

Nowadays, most CFD models are solved using a
finite element or finite volume approach on the basis
of unstructured geometries, i.e. a computation grid
based on irregularly distributed points. Many mesh
generators are available which build up a network
of nodes, edges and polygonal faces covering the
entire project area. These mesh generators consider
hydraulic parameters like angle criterion and aspect
ratio, but normally disregard the detailed topography.
The heights are mapped to the hydraulic grid a
posteriori. On the other hand, the direct use of the
high resolution ALS-DTM as computation grid is
impossible due to the enormous amount of data.

Therefore, the ultimate goal of this work is to derive
a high quality computation grid considering hydraulic
requirements as well as geometric details. In a first
step the DTM is thinned out based on a maximum
height threshold using an adaptive TIN-refinement
approach. The algorithm preserves surface details in
rough areas and removes as much points as possible
in flat areas. The approximating TIN is analyzed
in a subsequent data conditioning step, where the
adherence of certain mesh quality parameters like

aspect and expansion ratio but also the alignment of
the mesh with respect to the principal flow direction
are verified. As necessary, additional nodes are
added to the TIN resulting in a grid, which fulfills
the requirements of a good hydraulic computation
grid additionally preserving surface details. In that
sense the work at hand has to be regarded as
interdisciplinary between the fields of geodesy and
hydraulics.

This paper is structured as follows. In section 2 some
basic terms necessary for the general understanding
are introduced. Section 3 describes the applied
data processing methods (DTM-W generation, data
reduction and data conditioning). In section 4 some
examples of practical CFD simulations are presented
and the results using different variants of computation
grids are discussed. Finally, the basic findings of the
work are summarized in section 5.

2 DEFINITIONS

Since this paper addresses readers from different
fields, a short introduction of the terms used is given
in this section.

The processing described in this work starts with
the ALS point cloud from which a DTM is derived.
The DTM is regarded as a continuous description
of the earth’s surface, mathematically expressed
as bivariate function z = f(x, y). Traditional
data acquisition methods like terrestrial surveying
(Kahmen and Faig 1988) or photogrammetry (Kraus
2007) provide rather few discrete points or lines on
the ground. ALS data sets, in contrast, contain up
to 10 points per m2, some of which are reflected
from the bare ground but others from natural or
artificial objects (vegetation, buildings, power lines,
etc.). Thus, the point cloud needs to be classified
into terrain and off-terrain points which is often
referred to as filtering. To derive the height at any
desired location, spatial interpolation techniques are
employed. Among a variety of approaches, the linear
prediction (Kraus 2000) or the equivalent method
of Kriging (Journel and Huijbregts 1978) have to
be highlighted since random measurement errors are
minimized during the interpolation based on statistical
data properties. DTMs are most commonly stored
as regular grids or TINs respectively. In contrast,
a hybrid DTM structure based on a regular grid
with intermeshed break lines and spot heights (Köstli
and Sigle 1986) combining the advantages of direct
access (grid) and flexibility (TIN) is favored in this
work. This structure has proven to be well suited
for storage of even countrywide DTMs (Warriner and
Mandlburger 2005). For applying in CFD models a
specialized DTM variant is necessary, namely the so-
called watercourse DTM (DTM-W). It contains the
inundation area, the banks, the river bed and all flow
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Figure 2. Hybrid DTM-W of the river Saar (Germany)
at Schoden derived from ALS points, echo sounder
cross sections and data of the power station

prohibiting buildings (Mandlburger and Brockmann
2001). Since the near infrared signal typically used by
laser scanners does not penetrate water, it is necessary
to combine the ALS data with river bed data from echo
sounding or terrestrial surveying to get a DTM-W as
it is shown in Figure 2.

As mentioned before, the DTM-W is the geometric
basis for CFD models describing the water flow.
The mathematical and physical background of
such models are the momentum equations (Navier-
Stokes differential equations), which are solved by
aid of other physical fundamentals (energy and
continuity equation) and empirical flow formulae
(e.g. Manning-Strickler) using a finite element or
finite volume approach respectively. Therefore, the
entire project area is approximated by a polygonal
computation grid. Unstructured grids (i.e. meshes
with irregularly distributed nodes) are nowadays
preferred to structured grids, because the former allow
better consideration of the topography. However,
several criteria have to be fulfilled by the grid in
order to ensure both good computation performance
and physically reliable results. According to Ferziger
and Peric (2002) these are: angle criterion, aspect
ratio and expansion ratio. In a nutshell, small angles
<10◦ should be avoided, the cells should be aligned
to the principal flow direction, the aspect ratio should
not exceed 10 (optimum <3) and the expansion ratio
must not be greater than 3 (optimum <1.2). Besides
geometry, the spatially varying flow resistances are
another input for hydraulic models. They are typically
considered by applying certain roughness coefficients
to each grid cell. In practical flow simulations the
CFD model is calibrated by adjusting the roughness
coefficients until a satisfactory coincidence of model
results and reality is achieved. It can often be observed
that a lack of geometric details in the hydraulic
grid is compensated by adaption of the roughness
coefficients. Therefore, the next section describes a
method for constructing a high quality hydraulic grid,
which considers topographic details as provided by
ALS-DTMs.

3 METHOD

3.1 DTM-W generation

The first step towards a topography-based hydraulic
grid is the determination of a precise DTM-W from
the given ALS and river bed data. This implies
the following steps: Modeling of break lines (Briese
2004), filtering of the ALS point cloud, derivation
of the water-land-boundary to split aquatic from
non-aquatic domain (Mandlburger and Brockmann
2001) and densification of river bed cross sections
considering the curved progression of the river axis
(Mandlburger 2000). Not all the mentioned topics
can be discussed in this paper in detail but the
complete process is described in the author’s Ph.D.
(Mandlburger 2006).

In the following, the filtering of the ALS point
cloud is focused on since the removal of vegetation
and other off-terrain points is crucial for the quality
of subsequent hydraulic modeling. In the past,
many different solutions for filtering ALS data
were published (Sithole and Vosselman 2003). All
these approaches have in common that they rely
only upon geometric criteria (typically the height
relation of adjacent points) for the elimination of
off-terrain points. The recent generation of laser
scanners, however, provides the full waveform of the
backscattered signal (c.f. Figure 3) and enables the
derivation of additional attributes per echo like the
amplitude or the echo width in the postprocessing
after the flight mission (Wagner et al. 2006).
The robust interpolation approach (Kraus and Pfeifer
1998) developed at the Institute of Photogrammetry
and Remote Sensing, Vienna, allows a smart
consideration of these additional echo attributes in
the filtering process. The principal idea of robust

Figure 3. Recorded waveform (black dots) and echo
attributes derived by Gaussian decomposition; Echo
parameters: distance Ri, amplitude Ai and the echo
width EWi
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Figure 4. : DTM generation by robust interpolation
with a-priori weights determined from the echo width
demonstrated by means of a profile; Black dots:
Last echo point cloud, Red surface: DTM without
considering individual a-priori weights. Green
surface: Improved DTM by robust interpolation with
echo width dependent a-priori weights

interpolation is to start with a surface to which all
ALS points contribute equally, i.e. all points have the
same weight. Subsequently the weight of each point
is adapted according to its vertical distance form the
averaged surface, where points above the surface get
smaller weights. The additional echo attributes from
full waveform signal processing can now be used to
assign a-priori point weights, thus, speeding up the
iterative filtering process and increasing the reliability
of the classification (Mandlburger et al. 2007). Figure
4 shows the result of such an advanced robust filtering
for a terrain profile using the echo width (EW ) for
the determination of a-priori point weights. The echo
width describes the height variation of different targets
(e.g. different branches of a tree) contributing to a
single echo. In vegetation areas a widening of the echo
width can be observed. Thus, points with a small echo
width should get higher a-priori weights than points
with a high echo width. This is achieved by applying
the weight function w(EW ) = 1

1+a EW b , where
the coefficients a and b define how fast the weight
function drops to zero. As can be seen in Figure
4, the DTM determined without a-priori weights is
too high in areas covered by low vegetation due to
the fact that the last echo is a mixture of reflections
of small objects at different ranges above the DTM
surface. Using robust interpolation with echo width
dependent a-priori weights leads to a more reliable
DTM, especially near the road in the middle of the
profile. It is less affected by reflections in low
vegetation.

3.2 Data reduction

Most implementations of CFD models are restricted
with respect to the maximum number of cells in the
hydraulic grid (usually <500.000). By contrast, ALS-
DTMs typically consist of millions of points and
therefore surface simplification becomes inevitable.

According to Heckbert and Garland (1997) mainly
regular grid algorithms, decimation and refinement
techniques are in use. The regular grid approaches are
widespread, simple and fast, but they are not adaptive
and produce poor approximation results. Better
approximation quality can be achieved by applying
decimation and refinement methods based on general
triangulation algorithms like Delaunay triangulation.
Decimation methods work from fine-to-coarse and
are not suited for processing large high resolution
ALS-DTMs since they require a triangulation of the
entire point set. Refinement methods represent a
coarse-to-fine approach starting with a minimal initial
approximation. In each subsequent pass one or more
points are added as vertices to the triangulation until
the desired approximation tolerance is met or the
desired number of vertices is used.

The performance of DTM data reduction is highly
influenced by the existence of systematic and
random measurement errors. Therefore, refinement
approaches as described above based on the original
ALS point cloud directly are not the first choice.
Systematic errors have to be removed first by exact
sensor calibration and fine adjustment of the ALS-
strip data. Furthermore, random measurement errors
of the ALS points should be minimized by applying a
DTM interpolation strategy with measurement noise
filtering capabilities. Good results can be achieved
using linear prediction or Kriging respectively. High
reduction rates can only be obtained for DTMs free of
systematic and random errors.

In contrast to the previously mentioned refinement
approach, which relies on the original point cloud,
the subsequently presented refinement framework
uses the filtered hybrid DTM (regular grid with
break lines, structure lines and spot heights) as
input (Mandlburger 2006). The basic parameters for
the data reduction are a maximum height tolerance
∆zmax and a maximum planimetric point distance
∆xymax. The latter avoids triangles with too long
edges and narrow angles. The algorithm starts with
an initial approximation of the DTM comprising
all line information and a coarse regular grid (cell
size=∆xymax=∆0), which are triangulated using a
constrained Delaunay triangulation. Each ∆0-cell is
subsequently refined by iteratively inserting additional
DTM grid points until the height tolerance ∆zmax is
met. These additional vertices can either be inserted
hierarchically or irregularly. In case of hierarchical
division, the grid cell is divided into four parts in each
pass, if a single grid point within the regarded area
exceeds the maximum tolerance ∆zmax resulting in
a quadtree-like data structure. By contrast only the
grid point with the maximum deviation is inserted
when using irregular division. Higher compression
rates (up to 99% in flat areas) can be achieved with
irregular point insertion, whereas the hierarchical
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(a) Original hybrid DTM-W, grid width: 2m

(b) Adaptive TIN, hierarchic division, ∆zmax=0.25m,
compression rate: 83%

(c) Adaptive TIN, irregular division, ∆zmax=0.25m,
compression rate: 94%

Figure 5. DTM-W of the river Drau
(Carinthia/Austria); High resolution DTM-W (a)
and approximating TINs (b) and (c)

mode is characterized by a more homogeneous data
distribution. Using the terms of hydraulics, the
hierarchic division produces an adaptive cartesian grid
whereas irregular division yields an unstructured grid.

Furthermore, the described framework is flexible
concerning the reduction criterion. The decision
to insert a point can be based on the analysis of
local surface slope and curvature derived from the
DTM or on the vertical distance between the DTM
point and the approximating TIN. A comparison
of an original high resolution DTM-W with its
approximating adaptive TIN variants using hierarchic
and irregular division is shown in Figure 5.

3.3 Data conditioning

What has been achieved so far is an approximation
of the DTM with respect to geometric criteria only.
However, the resulting TIN is not an appropriate
computation grid for hydraulic modeling since no
physical requirements have been considered.

Therefore, the next step is to condition the grid and
to adapt the data distribution for special zones of
interest. From a modeling point of view the following
zones can be differentiated: River bed, river bank,
surrounding and extended inundation area. The river
bed is characterized by a permanent flow of water.
The flow direction - approximated by the progression
of the river axis - is the predominant direction of
force. Thus, to achieve physically reliable results,
the cells of the computation grid have to be aligned
alongside the current within the domain of the river
bed. Quadrilateral cells with the longer sides in and
the shorter ones perpendicular to the flow direction
proportional 3:1 (optimum aspect ratio) have turned
out to produce good modeling results. The same
applies for the river bank.

Beyond the embankment the water flow is no longer
strictly parallel, thus, irregular data distribution as
described in the previous subsection is appropriate.
However, the river bank surroundings should be
modeled in more detail than remote or elevated
areas since they are more endangered by potential
flood events. Height approximation errors of a
few centimeters can well have severe effects on
the adjacent estates, which may be of particular
importance for residential areas. With increasing
distance from or height above the river bank
the influence of the topography on the results
of the CFD model decreases, thus, allowing a
coarser approximation of the terrain. Within the
data reduction process the different demand of
approximation precision can be controlled by spatially
variable maximum height tolerances. Mathematically
this can be expressed as ∆zmax = f(x, y). Distances
from the river bank or relative height differences
respectively can be used to control the tolerances, but
a simple zonal model has turned out to be best suited.
The delineation of the different accuracy zones can be
derived from a pilot survey (e.g. a preliminary 1D-
CFD simulation), from DTM visualizations like hill
shadings, from existing maps or the like.

That way, a computation grid with a spatially adapted
data distribution and approximation accuracy is
derived from the high resolution ALS-DTM according
to the needs for hydraulic modeling. For the resulting
TIN the adherence of the quality criteria (angle, aspect
and expansion ratio) has to be checked in a last step.
Several tests with real-world data have shown, that
the angle criterion and the aspect ratio are within
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Figure 6. Hydraulic grid derived from a high
resolution ALS-DTM considering both geometric and
physical requirements

the valid range in the majority of cases using the
described method. However, expansion ratios of >3
can be observed occasionally. From a geometric point
of view this is a desired property of the reduction
algorithm since it demonstrates a rapid transition from
flat to rough terrain parts within the approximated
surface. This shows clearly that it is necessary to
combine geometric as well as physical aspects in order
to obtain a high quality computation grid. A small
section of a final hydraulic grid is shown in Figure 6.

4 RESULTS

Based on the methods described in the previous
section computation grids were derived for a section
of the river Lainsitz in Lower Austria (ordinal number
5 according to Horton-Strahler, average slope 0.25%,
meandering river type). The last echoes of an ALS
flight campaign (point density: 1 pt/m2) and river
bed cross sections measured with terrestrial dGPS
(profile distance: 100 m) were used to derive a high
resolution DTM-W (grid width: 1 m) as described in
section 3.1. Additionally, break lines (bridge piers)
were integrated in the DTM-W and the data reduction
and conditioning techniques explained in sections 3.2
and 3.3 were applied to the DTM-W. The resulting
computation grid was used as the geometric basis
for subsequent CFD modeling. The results of flow
simulations based on two different geometry variants
are shown in Figure 7, where the parts to the north of
the river are of special interest.

The water levels presented in Figure 7a were obtained
using a very simple regular grid reduction of the
ALS-DTM. However, the application of such poor
reduction techniques is still popular. It can clearly be
seen that the detailed shape of the topography (c.f. the
underlying hill shading) is insufficiently represented
in the computation grid. Relevant flow prohibiting or
flow enabling features like the roadway and the ditch

are not represented in the surface approximation and,
thus, the estimated water levels are incorrect, as Area
A is flood-affected rather than the correct Area B. By
contrast, the results shown in Figure 7b are based on
an elaborately reduced and conditioned computation
grid as described in sections 3.2 and 3.3. As in the
former example, the river bed and the embankment are
modeled using elongated quadrilaterals aligned to the
river axis. Furthermore, the surrounding river foreland
including the roadway and the ditch is approximated
very detailed (∆zmax=10 cm) and less geometric
details are provided in more distant and elevated areas.
Figure 7b shows that the roadway acts as an exact flow
barrier whereas a confined run-off is enabled through
the narrow ditch. The availability of geometric details
allows a more realistic simulation of the water flow
and consequently a more precise determination of
inundated areas.

Besides the water depth, CFD models also provide
additional flow parameters like flow velocity and flow
direction. Figure 8 shows a comparison of these

Area A
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roadw
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water depth [m]:
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(a) regular 16m-grid, river bed: cells aligned to the flow
direction
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(b) adaptive TIN, ∆zmax=variable=zone-dependent, river
bed: cells aligned to the flow direction

Figure 7. Water depths for high flow conditions (HQ5,
30m3/s) resulting from a 2D-CFD-simulation based
on the geometry variants (a) and (b); Data: river
Lainsitz (Lower Austria)
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flow velocity [m/s]:
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(a) adaptive TIN, ∆zmax=const=20cm, no additional data
conditioning
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(b) adaptive TIN, ∆zmax=variable=zone-dependent, river
bed: cells aligned to flow direction

Figure 8. Flow vectors and velocity distribution for
mean flow conditions (MQ, 2.2m3/s) resulting from
a 2D-CFD-simulation based on the geometry variants
(a) and (b); Data: river Lainsitz (Lower Austria)

parameters again based on two different geometry
variants for a small section of the river Lainsitz. The
computation grid shown in Figure 8a was deducted
from the ALS-DTM using the data reduction approach
described in section 3.2. It represents a correct
approximation of the high resolution DTM-W with
respect to a maximum vertical tolerance of 20cm.
However, the cells are not aligned to the direction
of the water flow resulting in an artificial geometric
roughness. Consequently, the calculated flow vectors
and velocity distribution are implausible. In other
words, to obtain a high quality hydraulic grid it is
insufficient to apply geometric criteria only. By far
better results can be obtained using cell elements
aligned to the principal flow direction within the river
bed and embankment as can be seen in Figure 8b.

5 CONCLUSIONS

This paper has presented the potential of high
resolution DTMs for improved hydraulic models. The

main goal of exploiting the full information provided
by ALS can only be achieved by establishing a
complete processing chain from the raw ALS point
cloud, via a precise DTM to the well-conditioned
hydraulic grid. The basic input for CFD models
is a precise DTM of the watercourse free of any
systematic and random errors. This requires thorough
orientation of ALS-strip data, proper filtering of off-
terrain points, correct fusion of ALS and additional
river bed data and, finally, DTM interpolation
including elimination of random measurement errors.
An advanced approach for filtering ALS point clouds
based on robust interpolation combining geometric
criteria and additional echo attributes derived from
full waveform data analysis has been presented. By
means of the echo width it was shown that additional
echo attributes can very well be used to improve the
reliability of the classification and the quality of the
DTM especially in low vegetation areas.

Due to the enormous amount of data, the high
resolution DTM-W cannot be directly used as
geometric basis for hydraulic modeling. A method
for DTM data reduction by adaptive TIN-refinement
was presented, which preserves topographic details
in rough areas and removes redundant points in
flat terrain parts. Depending on the terrain type
compression rates of up to 99% can be achieved.
In order to obtain a high quality computation
grid for CFD modeling special zones of hydraulic
interest and additional physical requirements (angle
criterion, aspect and expansion ratio) have to be
considered. Thus, the preliminary TIN approximation
is further improved by aligning the cells to the
principal flow direction within the river bed and
the bank and by establishing a spatially adapted
data distribution within the inundation area in a
subsequent conditioning step. That way, computation
grids considering both geometric details provided by
high resolution ALS data and physical requirements
can be generated and successfully applied in CFD
models. This result should be the initiation of a deeper
collaboration between geodesists and hydrologists in
order to integrate the knowledge of both disciplines
for an improved flood risk assessment.
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