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Abstract: For a random process(X(t), t ≥ 0), suppose that there is a costfx associated with being in statex.
This paper is concerned with evaluating the distribution and the expected value of the total costΓ over the life
of the process. The existing literature contains results for particular classes of process and particular choices
of f , usually linear functions of the state. We will describe a method which assumes only thatf is non-negative.
We characterize both the distribution and the expected value ofΓ as extremal solutions of systems of linear
equations. Of particular interest in biological applications is the case when there is a single absorbing state,
corresponding to population extinction, where we are usually interested in evaluating the cost of the process up
to the time of extinction. We will illustrate our results with reference to three important Markovian models: the
pure-birth process, the birth-death process, and the linear birth-death and catastrophe process.
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1. INTRODUCTION

Let (X(t), t ≥ 0) be a continuous-time Markov
chain taking values in the non-negative integersS =
{0, 1, . . . } and letA be a fixed subset ofS. Con-
sider the path integral

Γ =
∫ τ

0

fX(t) dt, (1)

wheref : A → [ 0,∞) and τ = inf{t > 0 :
X(t) /∈ A} is the first exit time ofA. Here fj

may be regarded as the cost per unit time of stay-
ing in statej. For example,fj might represent the
cost of an epidemic when there arej individuals in-
fected. It could be the amount of nutrient consumed
when a population is in statej, or, it could be the
storage cost associated with an inventory consisting
of j items. Γ is then the total cost over the period
that the chain spends inA.

Path integrals of this kind has been used in a va-
riety of applications: for example, in modelling
epidemics (Puri, 1967, Jerwood, 1970, Downtown,
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1972, Gani and Jerwood, 1972), in the assessment
of plant stress (Billard et al., 1998), in modelling
queueing, storage and traffic flow (Moran, 1959,
Gaver, 1969, Gani, 1970) and in assessing the risk
of computer virus attacks (Soh et al., 1995). How-
ever, in each case this work is limited by an assump-
tion thatfx is a linear function ofx. We will de-
scribe a method which assumes thatf is an arbitrary
non-negative function. We characterize the Laplace
transform of both the distribution and the expected
value ofΓ as extremal solutions of systems of lin-
ear equations. Our results are closely related to the
corresponding results (f identically 1) on the distri-
bution of first passage times (Syski, 1992). Explicit
formulae are available for special Markov chains.
For example, in the case of birth-death processes,
Flajolet and Guillemin (2000) and Ball and Ste-
fanov (2001) have obtained results on transforms
of the distributions of first passage times, and other
characteristics, in terms of continued fractions.

2. THE DISTRIBUTION OF Γ

LetQ = (qij , i, j ∈ S) be theq-matrix of transition



rates of the chain (assumed to be stable and conser-
vative), so thatqij represents the rate of transition
from statei to statej, for j 6= i, andqii = −qi,
whereqi :=

∑
j 6=i qij (< ∞) represents the total

rate out of statei. It will not be necessary to assume
thatQ is regular, so that there may actually be many
processes with the given set of rates. However, we
will take (X(t), t ≥ 0) to be theminimal chain
associated withQ.

We shall evaluate the Laplace transform of the dis-
tribution of path integral (1), conditional on the
chain starting in statei ∈ A, making the harmless
assumption thatqj > 0, for all j ∈ A, so thatA con-
tains no absorbing states. Letyi(θ) = Ei(e−θΓ),
with the understanding thatyi(θ) = 1 when i /∈
A. (Here and henceforth we will use the notation
Ei(·) = E(· |X(0) = i) andPi(·) = Pr(· |X(0) =
i).) The following result is a simple extension of the
standard characterization of hitting times (for exam-
ple, Theorem 9 on Page 86 of Syski (1992)). Its
proof can be found in Pollett and Stefanov (2002).

Proposition 1 For eachθ > 0, y(θ) = (yi(θ), i ∈
S) is the maximal solution to the system

∑

j∈S

qijzj = θfizi , i ∈ A, (2)

with 0 ≤ zj ≤ 1 for j ∈ A andzj = 1 for j /∈ A, in
the sense thaty(θ) satisfies these equations, and, if
z = (zi, i ∈ S) is any such solution, thenyi(θ) ≥
zi for all i ∈ S.

Formal differentiation of (2) suggests a correspond-
ing result on the expected value of the path integral,
conditional on the chain starting in statei ∈ A. In
fact, using similar arguments, we can arrive at the
following result (Pollett, 2003), which is an exten-
sion of Theorem 10 on Page 86 of Syski (1992).

Proposition 2 e = (ei, i ∈ A), whereei = Ei(Γ),
is the minimal non-negative solution to the system

∑

j∈A

qijzj + fi = 0 , i ∈ A. (3)

Remarks. If we setfi = 1 for all i ∈ A, thenΓ = τ ,
and so the above results can be used to determine
the distribution and the expectation ofτ (the time
to first exit fromA). In the case whenQ is regular,
these reduce to well known and widely used results
on hitting times; see, for example, Section 9.2 of
Anderson (1991).

Of particular interest are the cases (i)A = S with S
irreducible, and (ii)S = A ∪ {0}, with A irre-
ducible and0 being an absorbing state that is ac-
cessible fromA. In both cases,Γ counts the cost
over the lifetime of the chain. Note that ifQ is not

regular, then, in case (i),τ is the explosion time
of the chain (which is almost surely finite for all
starting states). The above results might therefore
be useful in biological applications, where we may
wish to account for explosive behaviour by allow-
ing the chain to perform infinitely-many transitions
in a finite time. Case (ii) was considered by Ste-
fanov and Wang (2000) for birth-death processes.
They derived an explicit expression for the expecta-
tion Ei(Γ), building on earlier work of Herńandez-
Súarez and Castillo-Chavez (1999), who studied the
casei = 1 and the linear functionfj = j.

On dividing equation (2) byfi, we see that, con-
ditional on X(0) = i, Γ has the same distribu-
tion asτ for the Markov chain with transition rates
Q∗ = (q∗ij , i, j ∈ S) given byq∗ij = qij/fi for all
i ∈ A such thatfi > 0, andq∗ij = qij otherwise.
This fact was first noticed by McNeil (1970) in the
context of birth-death processes. It is intuitively rea-
sonable, for ifTj is the total time that the process
spends in statej during the period up to timeτ , and
Nj is the number of visits toj during that period,
then

Γ =
∑

j∈A

fjTj and Tj =
Nj∑

n=1

Xjn,

where{Xjn, n = 1, 2, . . . } are independent and
identically distributed exponential random variables
with parameterqj . Since the distribution ofNj

does not depend on the holding times, but rather
on the transition probabilitiespij = qij/qi of the
jump chain, then, for statesj with fj > 0, fjTj

has the same distribution as the sum ofNj indepen-
dent and identically distributed exponential random
variables with parameterqj/fj . Therefore, since (in
an obvious notation)p∗ij = pij , and q∗i = qi/fi

for all i ∈ A such thatfi > 0, we would ex-
pect Γ to have the same distribution asτ for the
modified chain. This observation will be useful in
studying specific models for which the distribution
and the expectation ofτ are known in sufficient
generality to accommodate state-dependent transi-
tion rates. For example, in the case of birth-death
processes, there are explicit expressions for the ex-
pected value of various hitting times, and, expres-
sions for transforms of their distributions are avail-
able in terms of continued fractions (Flajolet and
Guillemin, 2000, Ball and Stefanov, 2001), while in
several special cases the hitting time densities are
known explicitly (Di Crescenzo, 1998).

3. SOME APPLICATIONS

In this section we give several applications to spe-
cific models. We start with the simplest Markov
chain that can exhibit explosive behaviour.



The pure-birth process. This process hasqi,i+1 =
qi > 0, i ≥ 0, with all other transition rates equal
to 0. The minimal chain has a lifetimeτ , which
is almost surely finite for all starting states if and
only if the series

∑∞
j=0 1/qj converges. Equations

(2) and (3) have explicit solutions. From (3) we get
Ei(Γ) =

∑∞
j=i fj/qj . From (2) we getPi(Γ <

∞) = 1 for all i ∈ S if and only if E0(Γ) < ∞, in
which case

Ei(e−θΓ) =
∞∏

j=i

qj

qj + θfj
, θ > 0, i ∈ S.

Birth-death processes. These haveqi,i+1 = ai,
i ≥ 0, qi,i−1 = bi, i ≥ 1, q0 = a0 andqi = ai + bi,
i ≥ 1, with all other transition rates equal to 0. We
will assume that the birth rates(ai, i ≥ 0) and the
death rates(bi, i ≥ 1) are all strictly positive, ex-
cept perhapsa0, which might be 0. Thus, we can ac-
commodate the two cases referred to above: ifa0 >
0, thenS is irreducible; otherwise,S = A ∪ {0},
with A = {1, 2, . . . } irreducible and0 an absorbing
state that is accessible fromA.

Proposition 2 can be used to obtain explicit formu-
lae for the expected value of the path integral. It is
easy to show that, whenS is irreducible,

Ei(Γ) =
∞∑

j=i

1
λjπj

j∑

k=0

fkπk , i ≥ 0,

where thepotential coefficients(πj , j ≥ 0) are
given byπ0 = 1 and

πi =
i∏

j=1

λj−1

µj
, i ≥ 1.

When 0 is an absorbing state, we need to distin-
guish two cases depending on whether or not the
seriesA =

∑∞
i=1 1/(µiπi) converges, where now

(πj , j ≥ 1) are defined byπ1 = 1 and

πi =
i∏

j=2

λj−1

µj
, i ≥ 2.

WhenA = ∞, a condition that corresponds to the
process being non-explosive with absorption proba-
bility 1, we have

Ei(Γ) =
i∑

j=1

1
µjπj

∞∑

k=j

fkπk,

for all i ≥ 1, this being finite if and only if∑∞
k=1 fkπk < ∞. WhenA < ∞, we have

Ei(Γ) =
i∑

j=1

1
µjπj

(
C(f)

A
−

j−1∑

k=1

fkπk

)
,

for i ≥ 1, where

C(f) =
∞∑

j=2

1
µjπj

j−1∑

k=1

fkπk =
∞∑

j=1

1
λjπj

j∑

k=1

fkπk,

with Ei(Γ) being finite if and only ifC(f) < ∞.

Proposition 1 can be used to identify the distribution
of Γ for specific cases. To illustrate this, consider
the linear birth-death process, which hasai = ai
and bi = bi for i ≥ 0, wherea and b are pos-
itive constants. Suppose thata < b, so that the
time τ to absorption is finite with probability 1 for
all starting states, and consider the path integral
Γ =

∫ τ

0
X(t) dt. With this specification, equations

(2) can be solved explicitly, and it is a simple mat-
ter to identify the minimal solution. We find that
Ei(e−θΓ) = (γ(θ))i, whereγ(θ) is the smaller of
the two zeros ofas2 − (a + b + θ)s + b (which are
both real and positive). Indeed, the Laplace trans-
form can be inverted to give the probability density

dPi(Γ ≤ t) =
i

t
e−(a+b)t

(
b

a

)i/2

Ii(2t
√

ab) dt,

where Ii(z) is the usual modified Bessel func-
tion of the first kind. This accords with the first-
passage time density of state 0 for theM/M/1
queue (Abate, Kijima and Whitt (1991)); see the re-
mark at the end of the previous section.

The birth-death and catastrophe process. This
process, first studied by Brockwell (1985), extends
the linear birth-death process by allowing for down-
ward jumps of arbitrary size (catastrophes). It has
transition rates given by

qij =





iρa, i ≥ 0, j = i + 1,

−iρ, i ≥ 0, j = i,

iρdi−j , i ≥ 2, 1 ≤ j < i,

iρ
∑

k≥i dk, i ≥ 1, j = 0,

with all other transition rates equal to 0. Hereρ
and a are positive,di is positive for at least one
value ofi in A = {1, 2, . . . } anda +

∑
i≥1 di = 1.

Clearly 0 is an absorbing state for the process andA
is an irreducible class. It is easy to establish that the
chain is non-explosive (Corollary 1 of Pollett and
Taylor (1993)). Brockwell (1985) showed that the
probability of extinction starting withi individuals
is 1 for all i ∈ A if and only if D (the expected
increment size), given by

D = a−
∞∑

i=1

idi = 1−
∞∑

i=1

(i + 1)di,

is less than or equal to 0; the process is said to be
subcritical, critical or supercriticalaccording asD
is negative, zero or positive.



We will consider only the subcritical case. Let

d(s) = a +
∞∑

i=1

dis
i+1, |s| < 1,

andb(s) = d(s)− s, so that, for example,

D = −b′(1−) = 1− d′(1−) (< 0).

Observe thatb(0) = a (> 0), b(1) = 1, that b is
strictly convex on[0,∞) and thatb has a unique
zeroσ on (0, 1). We will study the path integral (1)
with τ being the time to absorption. First we will
evaluateEi(Γ). We seek the minimal non-negative
solution to the system

iρazi+1 − iρzi + iρ

i−1∑

j=1

di−jzj + fi = 0, (4)

wherei ≥ 1. On multiplying bysi−1 and then sum-
ming over i, we find that a non-negative solution
exists wheneverg(σ) < ∞, whereg is the generat-
ing function of the sequence(gi, i ≥ 1) given by
gi = fi/i: g(s) =

∑∞
i=1 gis

i. The generating func-
tion of the minimal solution is then easily evaluated
in terms ofg. We find that

∞∑

i=1

Ei(Γ)si−1 =
g(σ)− g(s)

ρb(s)
, |s| < σ.

Since1/b(s) has a power series expansion nears =
0 with positive coefficients (Lemma V.12.1 of Har-
ris (1963)), we may write

1
ρb(s)

=
∞∑

j=0

ejs
j , |s| < σ,

where ej > 0; note thate0 = 1/(aρ). Thus,
Ei(Γ) < ∞ if and only if g(σ) < ∞, in which
case

Ei(Γ) = g(σ)ei−1 −
i−2∑

j=0

gi−1−jej , i ≥ 1. (5)

(Empty sums are taken to be 0.) To illustrate this,
takefi = αi−1, whereα > 0, so that

g(s) = − 1
α

log(1− αs), |s| < 1
α

,

and henceg(σ) < ∞ providedα < 1/σ. For ex-
ample, ifα = 1, thenfi = 1 andg(σ) < ∞ (since
σ < 1). We deduce thatEi(τ) < ∞ and

Ei(τ) = − log(1− σ)ei−1−
i−2∑

j=0

ej

i− 1− j
, i ≥ 1,

or equivalently,

∞∑

i=1

Ei(τ)si−1 =
1

ρb(s)
log

(
1− s

1− σ

)
, |s| < σ.

This is equation (3.1) of Brockwell (1985). As a
further illustration, takefi = i. In this case we have
gi = 1. Hence,g(s) = s/(1− s), and so

Ei(Γ) = ei−1

(
σ

1− σ

)
−

i−2∑

j=0

ej , i ≥ 1,

or equivalently,

∞∑

i=1

Ei(τ)si−1 =
(σ − s)

ρ(1− σ)(1− s)b(s)
, |s| < σ.

More explicit results can be obtained in the case
where the catastrophe size follows a geometric law.
Suppose thatdi = d(1 − q)qi−1, i ≥ 1, where
d(> 0) satisfiesa + d = 1, and 0 ≤ q < 1.
(The linear birth-death process is recovered on set-
ting q = 0.) It is easy to see thatD = a−d/(1−q).
In order thatD < 0 we requirec > 1, where
c = q + d/a. We also have

b(s) =
(d + qa)s2 − (1 + qa)s + a

1− qs

=
a(1− s)(1− cs)

1− qs
,

and henceσ = 1/c (< 1). The coefficients of the
power series for1/(ρb(s)) are easily evaluated us-
ing partial fractions. We find that

ej =
dcj − (1− q)a

ρa(d− (1− q)a)
, j ≥ 0,

Thus,Ei(Γ) can be evaluated by substituting these
expressions into (5), remembering that the expecta-
tion is finite wheneverg(σ) < ∞. For example, if
fi = αi−1, whereα > 0, the expectation will be
finite whenα < q + d/a, while if fi = i, we get

Ei(Γ) =
q + (1− q)i

ρ(d− (1− q)a)
.

Proposition 1 can be used to identify the distribu-
tion of Γ for specific choices off . To illustrate this,
suppose thatfi = i. For eachθ > 0, we seek the
maximal solution to

ρazi+1 − ρzi + ρ

i−1∑

j=1

di−jzj

+ ρz0

∞∑

j=i

dj = θzi, i ≥ 1, (6)

satisfyingz0 = 1 and0 ≤ zj ≤ 1 for j ≥ 1. On
multiplying by si−1 and then summing overi, we
find that

Ei(e−θΓ) =
1

1− s
− θ(γ − s)

(1− γ)(1− s)(ρb(s)− θs)
,



whereγ = γ(θ) is the unique solution toρb(s) =
θs on the interval0 < s < σ. In the case of geo-
metric catastrophes, we get

Ei(e−θΓ) =
β(θ)− q

1− q
(β(θ))i−1

, i ≥ 1,

whereβ(θ) is the smaller of the two zeros ofaρs2−
(ρ(1 + qa) + θ)s + ρ(d + qa) + qθ.
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