A Method for Evaluating the Distribution of the Total Cost
of a Random Process over its Lifetime

P.K. Pollett? and V.T. StefanoV

aDepartment of Mathematics, The University of Queensland
Queensland 4072, Australia (pkp@maths.ug.edu.au)

bDepartment of Mathematics and Statistics, The University of Western Australia, Crawley
Western Australia 6009, Australia (stefanov@maths.uwa.edu.au)

Abstract: For a random proces (t), ¢t > 0), suppose that there is a cgistassociated with being in state

This paper is concerned with evaluating the distribution and the expected value of the tofabgesthe life

of the process. The existing literature contains results for particular classes of process and particular choices
of f, usually linear functions of the state. We will describe a method which assumes onfyishain-negative.

We characterize both the distribution and the expected valieasf extremal solutions of systems of linear
equations. Of particular interest in biological applications is the case when there is a single absorbing state,
corresponding to population extinction, where we are usually interested in evaluating the cost of the process up
to the time of extinction. We will illustrate our results with reference to three important Markovian models: the
pure-birth process, the birth-death process, and the linear birth-death and catastrophe process.
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1. INTRODUCTION 1972, Gani and Jerwood, 1972), in the assessment
of plant stress (Billard et al., 1998), in modelling
queueing, storage and traffic flow (Moran, 1959,
Gaver, 1969, Gani, 1970) and in assessing the risk
of computer virus attacks (Soh et al., 1995). How-
ever, in each case this work is limited by an assump-

Let (X(¢), t > 0) be a continuous-time Markov
chain taking values in the non-negative integgérs
{0,1,...} and letA be a fixed subset of. Con-
sider the path integral

T tion that f, is a linear function ofz. We will de-
I'= /0 Fx dt, 1) scribe a method which assumes tffid an arbitrary
non-negative function. We characterize the Laplace
where f : A — [0,00) and7 = inf{t > 0 : transform of both the distribution and the expected
X(t) ¢ A} is the first exit ime ofA. Here f; value ofI" as extremal solutions of systems of lin-

may be regarded as the cost per unit time of stay- ear equations. Our results are closely related to the
ing in statej. For examplef; might represent the corresponding resultg (identically 1) on the distri-

cost of an epidemic when there gréndividuals in- bution of first passage times (Syski, 1992). Explicit
fected. It could be the amount of nutrient consumed  formulae are available for special Markov chains.
when a population is in statg or, it could be the For example, in the case of birth-death processes,

storage cost associated with an inventory consisting Flajolet and Guillemin (2000) and Ball and Ste-
of j items. I is then the total cost over the period  fanov (2001) have obtained results on transforms
that the chain spends i. of the distributions of first passage times, and other
Path integrals of this kind has been used in a va- characteristics, in terms of continued fractions.
riety of applications: for example, in modelling

epidemics (Puri, 1967, Jerwood, 1970, Downtown, 2. THEDISTRIBUTION OF T’

" This work was funded by the ARC (Grant No. A00104575).  Let@ = (g;5, ¢,j € S) be theg-matrix of transition



rates of the chain (assumed to be stable and conser-

vative), so that;; represents the rate of transition
from statei to statej, for j # ¢, andgq; = —q;,
whereg; := Z#i gi; (< o0) represents the total
rate out of state. It will not be necessary to assume
that@ is regular, so that there may actually be many
processes with the given set of rates. However, we
will take (X (¢), t > 0) to be theminimal chain
associated witld).

We shall evaluate the Laplace transform of the dis-
tribution of path integral (1), conditional on the
chain starting in staté € A, making the harmless
assumption that; > 0, forall j € A, so thatA con-
tains no absorbing states. Lgt(#) = E;(e "),
with the understanding that;(§) = 1 wheni ¢

A. (Here and henceforth we will use the notation
E,(-) = E(-|X(0) = i) andP;()) = Pr(-|X(0) =

1).) The following result is a simple extension of the
standard characterization of hitting times (for exam-
ple, Theorem 9 on Page 86 of Syski (1992)). Its
proof can be found in Pollett and Stefanov (2002).

Proposition 1 For eachd > 0, y(0) = (y;(0), ¢ €
S) is the maximal solution to the system

Z qijzj = 0fizi, 1€ A,

jeS

@)

with0 < z; < 1forj € Aandz; =1forj ¢ A,in
the sense thag(9) satisfies these equations, and, if
z = (z;, ¢ € S) is any such solution, thep (9) >

z; foralli € S.

Formal differentiation of (2) suggests a correspond-
ing result on the expected value of the path integral,
conditional on the chain starting in state A. In
fact, using similar arguments, we can arrive at the
following result (Pollett, 2003), which is an exten-
sion of Theorem 10 on Page 86 of Syski (1992).

Proposition 2 e = (e;, ¢ € A), wheree; = E;(T"),
is the minimal non-negative solution to the system

ZQijzj+fi:0a i€ A 3)

jeA

RemarkslIf we setf; = 1foralli € A, thenl' = 7,

and so the above results can be used to determine
the distribution and the expectation of(the time

to first exit from A). In the case wher) is regular,
these reduce to well known and widely used results
on hitting times; see, for example, Section 9.2 of
Anderson (1991).

Of particular interest are the cases4i)= S with S
irreducible, and (ii)S = A U {0}, with A irre-
ducible and0 being an absorbing state that is ac-
cessible fromA. In both casesl’ counts the cost
over the lifetime of the chain. Note thatd is not

regular, then, in case (i); is the explosion time
of the chain (which is almost surely finite for all
starting states). The above results might therefore
be useful in biological applications, where we may
wish to account for explosive behaviour by allow-
ing the chain to perform infinitely-many transitions
in a finite time. Case (ii) was considered by Ste-
fanov and Wang (2000) for birth-death processes.
They derived an explicit expression for the expecta-
tion E;(T"), building on earlier work of Hergindez-
Suarez and Castillo-Chavez (1999), who studied the
casei = 1 and the linear functiorf; = j.

On dividing equation (2) byf;, we see that, con-
ditional on X (0) i, I' has the same distribu-
tion asr for the Markov chain with transition rates
Q* = (g, 1,5 € S) given byq;; = ¢;;/ f; for all

1 € A such thatf; > 0, andq;‘j = ¢;; otherwise.
This fact was first noticed by McNeil (1970) in the
context of birth-death processes. Itis intuitively rea-
sonable, for ifI; is the total time that the process
spends in statg during the period up to time, and
N is the number of visits tg during that period,
then

N

I=> fT;, and Tj=> X,
JEA n=1

where{X,,,n = 1,2,...} are independent and
identically distributed exponential random variables
with parameterg;. Since the distribution ofV;
does not depend on the holding times, but rather
on the transition probabilities;; = ¢;;/¢; of the
jump chain, then, for stategwith f; > 0, f;7}
has the same distribution as the sum\gfindepen-
dent and identically distributed exponential random
variables with parametey; / ;. Therefore, since (in
an obvious notationp;; = p;;, andg; qi/fi
for all i € A such thatf; > 0, we would ex-
pectI' to have the same distribution asfor the
modified chain. This observation will be useful in
studying specific models for which the distribution
and the expectation of are known in sufficient
generality to accommodate state-dependent transi-
tion rates. For example, in the case of birth-death
processes, there are explicit expressions for the ex-
pected value of various hitting times, and, expres-
sions for transforms of their distributions are avail-
able in terms of continued fractions (Flajolet and
Guillemin, 2000, Ball and Stefanov, 2001), while in
several special cases the hitting time densities are
known explicitly (Di Crescenzo, 1998).

3. SOME APPLICATIONS

In this section we give several applications to spe-
cific models. We start with the simplest Markov
chain that can exhibit explosive behaviour.



The pure-birth process This process hag ;11 =

q; > 0,1 > 0, with all other transition rates equal
to 0. The minimal chain has a lifetime, which

is almost surely finite for all starting states if and
only if the seriesZ;?":O 1/q; converges. Equations
(2) and (3) have explicit solutions. From (3) we get
Ei(T) = 372, fi/q;- From (2) we ge®;(T' <
oo) =1foralli € Sifandonly if Eo(T") < oo, in
which case

o0

— q;
El‘(e OF) — H J ,
=i q; +0fj

0>0,i€S.

Birth-death processes These havey; ;11 = a;,
i12>0,¢,—1=0b;,12>1,q0 = ap andg; = a; + b,

1 > 1, with all other transition rates equal to 0. We
will assume that the birth ratés;, < > 0) and the
death rategb;, ¢ > 1) are all strictly positive, ex-
cept perhaps,, which might be 0. Thus, we can ac-
commodate the two cases referred to abovey it

0, thenS is irreducible; otherwiseS = A U {0},
with A = {1,2,... } irreducible and) an absorbing
state that is accessible from

Proposition 2 can be used to obtain explicit formu-
lae for the expected value of the path integral. It is
easy to show that, whesiis irreducible,

where thepotential coefficient§r;, j > 0) are
given bymy = 1 and

When 0 is an absorbing state, we need to distin-
guish two cases depending on whether or not the
seriesA = Y7, 1/(u;m;) converges, where now
(mj, j > 1) are defined byr; =1 and

i

=2

When A = oo, a condition that corresponds to the
process being non-explosive with absorption proba-
bility 1, we have

Z

for all # > 1, this being finite if and only if
>y femi < 0o. WhenA < oo, we have

j—1
-3 fm> :
k=1

kam,

1T

i

(e

j=1 KT

E;(T)

fori > 1, where

n=y

72‘l]]k1

J—

1 o'} 1
frm k—z_:/\ﬂ]

J
kaﬂ-kv
k=1

with E;(T") being finite if and only ifC(f) < oo.

Proposition 1 can be used to identify the distribution
of T for specific cases. To illustrate this, consider
thelinear birth-death processwhich hasa; = ai
andb; = bi for i > 0, wherea andb are pos-
itive constants. Suppose that < b, so that the
time 7 to absorption is finite with probability 1 for
all starting states, and consider the path integral
I = fo t) dt. With this specification, equations
(2) can be solved explicitly, and it is a simple mat-
ter to identify the minimal solution. We find that
Ei(e=T) = (v(0))?, wherey(#) is the smaller of
the two zeros ofis? — (a + b+ 6)s + b (which are
both real and positive). Indeed, the Laplace trans-
form can be inverted to give the probability density

) i/2
dP;(T < t) = %e—<a+b>t (Z) I;(2tVab) dt
where I;(z) is the usual modified Bessel func-
tion of the first kind. This accords with the first-
passage time density of state 0 for thé/M /1
queue (Abate, Kijima and Whitt (1991)); see the re-
mark at the end of the previous section.

The birth-death and catastrophe process This
process, first studied by Brockwell (1985), extends
the linear birth-death process by allowing for down-
ward jumps of arbitrary size (catastrophes). It has
transition rates given by

ipa, 120, j=1i+1,
] —ip, i>0, =1
%= ipd_y, i>2,1<j<i,
P s iy 21,5 =0,

with all other transition rates equal to 0. Hege
and a are positive,d; is positive for at least one
value ofiin A={1,2,...}anda+ Y ,., d; = 1.
Clearly 0 is an absorbing state for the process.and
is an irreducible class. It is easy to establish that the
chain is non-explosive (Corollary 1 of Pollett and
Taylor (1993)). Brockwell (1985) showed that the
probability of extinction starting with individuals

is 1 foralli € Aifand only if D (the expected
increment size), given by

oo o0

D=a-Yid=1-3(i+1)d,

i=1 i=1

is less than or equal to 0O; the process is said to be
subcritical critical or supercriticalaccording adD
is negative, zero or positive.



We will consider only the subcritical case. Let
e .
d(s) =a+ Zdis”l, |s] <1,
=1

andb(s) = d(s) — s, so that, for example,
D=-b(1-)=1-d'(1-) (<0).

Observe thab(0) = a (> 0), b(1) = 1, thatb is
strictly convex on[0, co) and thatb has a unique
zeroo on (0,1). We will study the path integral (1)
with 7 being the time to absorption. First we will
evaluateE; (I"). We seek the minimal non-negative
solution to the system

i—1

ipazi1 — ipz; + ipZdi,jzj +£i=0, (4
j=1

where; > 1. On multiplying bys*~! and then sum-
ming overi, we find that a non-negative solution
exists whenevey(o) < oo, whereg is the generat-
ing function of the sequendg;, ¢ > 1) given by

gi = fi/i: g(s) = > o, g:s". The generating func-
tion of the minimal solution is then easily evaluated
in terms ofg. We find that

= ) i—1 _ g(o) —g(s)

Sincel/b(s) has a power series expansion neas
0 with positive coefficients (Lemma V.12.1 of Har-
ris (1963)), we may write

|s] < o.

1 =
= Zejsj, |s| < o,
ph(s) =

wheree; > 0; note thatey = 1/(ap). Thus,
E;(T') < oo if and only if g(o) < oo, in which
case

i—2
Ei() = g(o)ei—1 — Zgiqu@j, i>1. (5)
=0

(Empty sums are taken to be 0.) To illustrate this,
take f; = a’~1, wherea > 0, so that

1 1
g(s) = = log(1 — as), Is| < —,

and hencg(o) < oo provideda < 1/0. For ex-
ample, ifa = 1, thenf; = 1 andg(o) < oo (since
o < 1). We deduce thdt;(7) < co and

i—2
Ei(r) = —log(l—0)e;—1 — Z i—elij—j’ 1 >1,
§=0

or equivalently,

> 1
Ei(1)s" 1 = log
2B =

1—s H<
T S 0.
1—0)’

This is equation (3.1) of Brockwell (1985). As a
further illustration, takef; = i. In this case we have
g; = 1. Henceg(s) = s/(1 — s), and so

i—2
o .
Ei(I‘):ei_l (1_0_) — Eoej, 221,
i=

or equivalently,

;Ei(T)SP ~ -

(c—s)
o)1 -

, 8] < o.

5)b(s)

More explicit results can be obtained in the case
where the catastrophe size follows a geometric law.
Suppose thatl, = d(1 — q)¢*~', i > 1, where
d(> 0) satisfiesas +d = 1, and0 < ¢ < 1.
(The linear birth-death process is recovered on set-
tingg = 0.) Itis easy to see thd = a—d/(1—q).

In order thatD < 0 we requirec > 1, where

¢ =q+ d/a. We also have

2
—(1
b(s):(d+qa)s (1+ga)s+a
1—gs

_ a(l —s)(1 —cs)
1—gs

)

and hencer = 1/c (< 1). The coefficients of the
power series foll /(pb(s)) are easily evaluated us-
ing partial fractions. We find that

dc? — (1 —q)a
¢j=— s, j 20,
77 pa(d— (1 —gq)a)’ 7

Thus,E;(T") can be evaluated by substituting these
expressions into (5), remembering that the expecta-
tion is finite whenevep (o) < co. For example, if

fi = o7, wherea > 0, the expectation will be
finite whena < ¢ + d/a, while if f; = i, we get

g+ (1—q)i
p(d—(1—-qa)’

Proposition 1 can be used to identify the distribu-
tion of I for specific choices of. To illustrate this,
suppose thaf; = . For eachy > 0, we seek the
maximal solution to

E;(I') =

i—1
pazii1 — pzi + pz di—jz;

Jj=1

“"onzdj =0z, 1>1, (6)
j=t
satisfyingzy = 1 and0 < z; < 1forj > 1. On
multiplying by s°~! and then summing over we
find that

1 0(y —s)

T i e e [ [Tk




wherey = ~(0) is the unique solution tpb(s) =
fs on the intervall < s < o. In the case of geo-
metric catastrophes, we get

Bi(e") = X o)t iz

)

where(6) is the smaller of the two zeros afs? —
(p(1 +qa) +0)s + p(d + qa) + ¢f.
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