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The investigation of perturbation experiments is important not only to forecast the effect of human 
management but also to understand community interactions. In the present paper, the dynamic processes in a 
prey-predator system are studied on a two-dimensional lattice. It is known that this system exhibits 
nonequilibrium phase transition of extinction. By computer we carry out perturbation experiments of 
extinction, and find that in the extinction process of the prey, the fluctuation enhancement (FM) is clearly 
observed, where FM means a high variation in extinction process. However, in the case of extinction of the 
predator, this enhancement is not observed. When prey goes extinct, the dynamic process has a lot of 
variation compared to the extinction of predator. Moreover, it is found that FM is clearly observed by 
spatially explicit model.. 
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1. Introduction 

Study of perturbation experiments is served for the 
prediction of ecological managements (Paine, 
1966; May, 1973; Pimm, 1993; Tilman & 
Downing, 1994; Caswell & Cohen, 1995). The 
most familiar approach to perturbation 
experiments is the press perturbation, where one or 
more quantities (such as densities of species) are 
altered and held at higher or lower levels. It is well 
known that the response of an ecosystem to a 
perturbation consists of two parts (Bender, 1984; 
Yodzis, 1988); that is, short- and   long-term 
responses. It is well known that the latter response 
contains indeterminacy (uncertainty) (Yodzis, 
1988; Pimm, 1993; Schoener, 1993; Tainaka, 
1994a; Schmitz, 1997). The long-term response is 
much difficult to predict, compared to the short-
term response. This indeterminacy comes not only 
from non-linear but also from indirect effects. In 
the present paper, we report the indeterminacy in 
the short-term response. It is difficult to predict the 
extinction of species. 

Recently, coworkers in our laboratory (Tainaka, 
Hosiyama & Takeuchi, 2000) studied the computer 
experiments of extinction for  contact process 
(Harris, 1974; Schlogl, 1972; Konno, 1994) that 
contained a single species. They applied two 
simulation methods: one was the lattice model 
(contact process), where interaction was restricted 
between adjacent lattice points, and the other was 
the mean-field simulation (MFS) in which long-
range interaction was allowed between any pair of 

lattice points. They found that the so-called 
fluctuation enhancement (Kubo, Matsuo & 
Kitahara, 1973; Suzuki 1977; Suzuki 1981; 
Tsuchiya & Horie, 1985) clearly occurred only for 
the lattice model. 

In the present paper, we deal with a more 
complicated system that contains two species; 
namely, prey (X) and predator (Y). Various types 
of prey-predator system have growing interest in 
various field, such as ecology (Pacheco, et al, 
1997; Hance and Van Impe, 1998) and physics 
(Lipowski & Lipowska, 2000; Droz & Kalski, 
2001; Rozenfeld & Alban, 2001). We apply the 
prey-predator model first introduced by Tainaka 
and Fukazawa (1992). Each lattice site is labeled 
by X, Y, or O (vacant site), and interactions are 
defined by 

 
where the reactions (1a) and (1b) respectively 
mean the reproduction of prey and predation, and 
(1c) represents the death process of Y. The 
parameter r is the reproduction rate of prey (r=1), 
and m is the mortality rate of Y.  

This system have revealed the following phase 
transitions: (i) When a death rate m of predator is 
higher than my, the predator goes extinct. (ii) In 
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contrast, m decreases and approaches mx, the prey 
density becomes zero. The critical values takes mx 
~ 0 and my ~ 0.91 for lattice model and mx = 0 and 
my = 2 for mean-field theory. In the limit m → 0, 
the predator survives for mean-field theory, 
whereas the survival of predator is still unknown 
for lattice model (Tainaka 1994; Satulovsky & 
Tome, 1994; Sutherland & Jacobs, 1994; Nakagiri, 
Tainaka & Tao 2001).  

2. Methods 

2-1.  Time Evolution 

We apply two simulation methods: one is a lattice 
model and the other is mean-field simulation 
(MFS). In the former, interaction is restricted 
between neighboring lattice sites, while in the 
latter interaction is aloud between any pair of 
lattice sites. First, we describe the simulation 
method for the lattice model: 

1) Initially, we distribute species on a square 
lattice; each lattice site is either empty (O) or 
occupied by prey (X) or predator (Y). 

2) The reactions in (1) are performed in the 
following two steps: 

(i) First, we perform two-body reactions (1a) and 
(1b): Choose one lattice site randomly, and then 
specify one of four adjacent sites. Let the pair react 
according to (1a) and (1b). For example, if these 
sites are X and O, then the latter site is changed 
into the former one by the rate r (r = 1). We 
employ the periodic boundary condition. 

 (ii) We perform a single particle reaction (1c). 
Choose one lattice point randomly; if the site is 
occupied by Y, that site will become O by a 
probability (rate) m. 

In the case of lattice model, each individual on a 
lattice site is assumed not to move: this assumption 
is applicable for plant, and may be approximately  
valid even for animals, provided that the radius of 
action of an individual is much shorter than the 
size of the entire system. 

Next, we describe the method of mean-field 
simulation (MFS). Almost all procedures of lattice 
model are not changed in MFS, but the algorithm 
of two-body reactions is changed as follows: two 
lattice sites are randomly and independently 
chosen. 

2-2.  Perturbation Experiment 

The system (1) exhibits a phase transition or 
extinction as described before. In this paper, we set 
r = 1, and change the value of parameter m. Then 

the phase transition point have been obtained as 
follows: mx = 0 and my = 2 for mean-field theory 
and my ~  0.0 and my ~ 0.9 for square lattice model. 
The experiment is performed as follows: Before 
the perturbation (t < 100), our system stays in a 
stationary state at m = m1, where both species X 
and Y coexist (mx < m1 < my).  After t =100, the 
phase transition (extinction) is brought about: the 
death rate m is suddenly increased or decreased, 
and held at m = m2, where m = m2 is a value near 
mx or my. We repeat the same experiment (from m1 
to m2) many times (N times), and record the time 
dependence of species density.  

We prepare N kinds of initial patterns (ensembles), 
and obtain the densities  xi(t) and yi(t) for t > 200. 
We calculate the ensemble average A(t) and the 
variance V(t) which are defined by  

 
These equations are for the prey; for the predator, 
xi(t) in above equations must be replaced by yi(t). 
Our question is whether the enhancement of 
variation (fluctuation) occurs, in other words, 
whether the values of V(t) in dynamical process 
extremely increase compared to those in stationary 
state. 

3. Mean-Field Theory and MFS 

3-1.  Mean-Field Theory 

If the total number of lattice sites is infinite, the 
population dynamics for MFS is represented by 
mean-field theory:  

 
where x and y are the densities of species X and Y, 
respectively, and the dots denote the derivative 
with respect to the time t which is measured by the 
unit of the Monte Carlo step (Tainaka, 1988). 
Setting all the time derivatives in (4) to be zero, we 
find the stationary solution (r = 1):  

where xs and ys are steady state densities of x and y, 
respectively. From (5), we find that the critical 
values are expressed by  mx = 0 and my = 2. It is 



known that stationary solution (5) is 
asymptotically stable for 0 < m < 2. 

Next, we prove the critical slowing-down 
(divergence of relaxation time). There is a close 
relation between critical slowing-down and 
fluctuation enhancement. Assume that the system 
initially stays near stationary state. We expand x 
and y around the steady-state densities: 

where X and Y are small values (X << 1, Y << 1). 
Inserting above equations into (4) and collecting 
terms to the first order of X and Y, we get  

 
From these equations, we have  

 
where the relaxation time 1/λ satisfies 

Eqs. (8) and (9) denotes the critical slowing-down:  
the relaxation time diverges (λ → 0) in the limit 
m → mx or m → my. Since the critical slowing-
down is associated with fluctuation enhancement, 
we perform experiments of phase transition 
(extinction). 

3-2.  Results for MFS 

Results for MFS are described. If the size L of 
lattice is finite, the deterministic equation (4) 
should be modified by the effect of fluctuation. In 
the present paper, we never use a stochastic 
equation, but directly estimate the fluctuation 
(variation) by computer simulation. In Fig. 1, a 
typical result of a phase transition is illustrated (N 
= 100 and L2 = 104), where the perturbation is 
applied for t ≧ 100 (the value of death rate m of 
predator is jumped from m1 = 0.5 to m2 = 0.02. 
Here the time dependencies of both A(t) and V(t) 
are respectively plotted in the upper and lower 
figures.. It is found from upper figure that the prey 
X goes extinct by the perturbation．The lower 
figure (Fig. 1) shows the fluctuation enhancement: 
the variation V(t) of predator suddenly increases. 
We carry out various experiments for the 
extinction of both prey and predator. In most cases, 

no fluctuation enhancement is observed: the value 
of V(t) is monotonically decreases.  However, 
when m2  is near the extinction point of prey, we 
can detect the enhancement of fluctuation. Namely, 
there are many processes for the extinction of prey.  

 

Fig.1 A typical result of perturbation experiment 
for MFS. The time dependencies of average A(t) 
and variance V(t) for both species are depicted in 
the upper and lower figures, respectively. The 
value of V(t) is increased by a factor of 104. At 
time t = 100, the value of death rate m is suddenly 
decreased from 0.5 to 0.02. We repeat the similar 
experiment 1000 times (N = 1000) on a square 
lattice of L2 = 104 sites. 

 
 

 

 

 

 

 

 

 

 



Fig.3 The same as Fig.1, but for lattice model. The 
mortality rate m is jumped from m1 = 0.3 to m2 = 
0.02. 

 (a) t=0                                (b) t=90 

  

 

 

4. Results for Lattice Model 

(c) t=110                            (d) t=200 Simulation results for lattice model are described. 
First, we carry out perturbation experiments of 
predator extinction. In Fig. 2, typical spatial 
patterns are illustrated, where grey, black and 
white represent prey, predator and empty, 
respectively. The perturbation is applied for t ≧
100: the mortality rate m is jumped from m1 = 0.3 
to m2 = 0.02. The initial random pattern (a) 
naturally evolves into a  stationary state (b). When 
the perturbation is applied, the population size of 
prey (predator) decreases (increases). Finally, the 
prey goes extinct by the perturbation. In (c), the 
population size of predator increases. In (d), the 
prey is almost extinct. Figure 3 displays the time 
dependencies of both A(t) and V(t). We find from 
Fig. 3 that the fluctuation enhancement clearly 
takes place in the transient process to extinction: 
the variance of predator is suddenly increased just 
after the perturbation. Namely, the population 
dynamics of predator has a lot of processes. It 
should be noted that the peak of variance becomes 
clear, compared to the mean-field simulation 
(MFS). According to various experiments, the 
fluctuation enhancement occurs, only when the 
prey goes extinct. If the predator becomes extinct 
the values of V(t) for both prey and predator is 
monotonically decreased. 

  

Fig.2 A typical result of perturbation experiment 
for lattice model. The perturbation is applied for t 
≧100. (a) initial random pattern, (b) stationary 
state, (c) transient state after perturbation, (d) 
spatial pattern near new stationary state. The 
colors grey, black and white represent prey, 
predator and empty, respectively. In (c), the 
population size of predator increases. In (d), the 
prey is almost extinct. 

 

 

5.  Discussions 

Perturbation experiments of phase transition 
(extinction) are carried out for two-dimensional 
prey-predator model. The death rate m of predator 
is suddenly increased or decreased from m1 to m2, 
where m1 represent an existing state (mx < m1 < my) 
and m2 takes a value near one of extinction points 
(mx or my). When m2 takes a value near the 
extinction point mx of prey, then the enhancement 
of variation (fluctuation) in dynamic processes 
takes place (Figs. 1 and 3). On the other hand, for 
the extinction process of predator, no fluctuation 
enhancement takes place. Our study reveals the 
following results: 

(a) the fluctuation enhancement was clearly 
observed for lattice model (CP), compared to the 
mean-field simulation (MFS).  



we have Rii = 1. When Rii > 1 (Rii < 1), the spatial 
distribution of species i is clumped (uniform). In 
Fig. 5, the degree of clumping Pii is depicted 
against the death rate m of predator (I = X, Y). 
From this figure, we find the following results: 

(b) the fluctuation enhancement was never directly 
associated with the critical slowing down: the 
critical slowing down was observed for both lattice 
model and MFS, whereas the fluctuation 
enhancement emerged only for lattice model. 

i) Very near the extinction point mx (or my), the 
clumping degree of endangered species X (or Y) 
diverges. 

(c) No fluctuation enhancement can be observed 
for the species which goes extinct. It emerges for 
surviving species. 

(d) We can observe asymmetry in the fluctuation 
enhancement: in the case of extinction of predator, 
no fluctuation enhancement is observed, while in 
the extinction process of prey, the enhancement 
occurs. 

ii) Considerably near the extinction points, in the 
case of endangered prey, the clumping degree 
takes a higher value than that in the case of 
endangered predator (see also Fig. 4).  

The result i) can be observed for both species, 
whereas the result ii) indicates the difference 
between prey and predator, Hence, the latter may 
be important for the fluctuation enhancement. 
Non-random distribution, more precisely, 
clumping behavior, may play an important role for 
the enhancement. 

The results (a) and (b) are also observed for the 
contact process (Tainaka, et al, 2000). However, 
the results (c) and (d) are never seen in the 
previous works:  

We discuss the mechanism of the asymmetry 
between prey and predator. The mean-field theory 
(4) predicts some information for the asymmetry: 
the final densities (x, y) for t → ∞ become (1, 0) 
for m = my = 2, whereas they are given by x = 0 
and 0 ≧ y ≧ 1 in the case m = mx = 0. Thus, 
uncertainty factor for m = 0 may be greater than 
that for m = 2.  

 

 

It should be emphasized that the fluctuation 
enhancement is clearly observed for the lattice 
model. We consider that the spatial pattern is one 
of important factors for the emergence of 
fluctuation enhancement. In Fig. 5, typical spatial 
patterns in stationary state are displayed [(a): m = 
0.04 and (b): m = 0.88], where grey, black and 
white denote the lattice sites of X, Y and O, 
respectively. In the case of (a), prey faces 
extinction, whereas in (b), the predator is 
endangered. For both patterns, the densities of the 
endangered species almost take the same value 
(0.03), whereas we notice that prey is more 
clumped than predator. The stationary patterns in 
Fig. 5 suggest that the asymmetry is originated in 
the clumping behavior of species. In other words, 
by the clumping pattern of prey, the multiplicity of 
extinction process is emphasized. 

Fig.4 Snapshots of typical stationary patterns. (a): 
m = 0.04, and (b): m = 0.88. The colors grey, black 
and white represent prey, predator and empty, 
respectively. In (a) the prey faces extinction, 
whereas in (b) the predator is endangered. 
Although the densities of both endangered species 
almost take the same value (0.03), the prey in (a) is 
more clumped than predator in (b). 

 

We explore the degree of clumping of both species 
X and Y in stationary state. To this end, we obtain 
the ratios  RXX and RYY defined by (Tainaka & 
Fukazawa, 1992; Tainaka, 1994)  

 
where Pii is the probability density finding a state i 
at a site and a state j at a nearest neighbor of the 
former site (i =X, Y). 

When the distribution of species is just random, Fig.5 Degree of clumping in stationary state. The 
values of clumping degree for both species are 



obtained by equations (10). The circles and 
squares denote the results of prey and predator, 
respectively. 
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