
Sensitivity-Assessment Needs of Complex Simulation 
Models for Integrated Catchment Management  

J.P. Nortona,  R.Nathanb, G. Podgerc,d and R. Vertessyc,e 

 

a  Integrated Catchment Assessment & Management, ANU, Canberra, Australia:  j.p.norton@bham.ac.uk 

b  Sinclair Knight Merz, Malvern, Victoria, Australia      c  CRC for Catchment Hydrology 

d  NSW Dept. of Land & Water Conservation, Sydney, Australia      

e   CSIRO Land & Water, Canberra, Australia 

 

Abstract: The Australian CRC for Catchment Hydrology has developed a software environment for 
integrating models of various aspects of catchments. Effective use of the resulting complex models requires 
knowledge of the sensitivity of their outcomes to variations in parameters or inputs, and hence to the 
underlying data and assumptions. Sensitivity assessment (SA) for such models makes demands beyond the 
capability of conventional techniques. A new SA approach devised in iCAM, ANU translates requirements 
on model outputs into constraints on input or parameter values. This allows assessment of the parameter 
ranges yielding outputs leading to the same management decision. SA tools employing this approach must 
take account of the needs of modellers, model users, catchment managers and other stakeholders. A review of 
the SA needs of integrated simulation models for catchment management has been carried out within the 
CRC’s programme, with the new approach in mind. Its motivation, scope and conclusions are summarised.  
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1. INTRODUCTION 

The Australian Cooperative Research Centre 
(CRC) for Catchment Hydrology has developed a 
software environment (TIME: The Invisible 
Modelling Environment) allowing integration of 
models of catchment attributes such as rainfall-
runoff processes, irrigation, land use, ecology and 
economics. Integrated models to assist 
environmental management, e.g. of water use in a 
catchment, are also appearing elsewhere. Their 
effective use requires examination of sensitivity 
of the modelled outcomes to uncertainty or 
variations in parameters, inputs and assumptions. 
Sensitivity assessment (SA) for such models 
makes demands beyond the capability of 
conventional techniques. A new approach devised 
in the Integrated Catchment Assessment and 
Management group at ANU treats SA as 
translation of a set of requirements on model 
outputs (e.g. that they fall within given ranges) 
into bounds on the input and/or parameters. This 
can indicate the range of parameter values 
yielding outputs leading to the same management 

decision. The adequacy of parameter estimates 
can be gauged by comparing their estimated 
uncertainty with those ranges. The most critical 
parameter combinations are those with the 
narrowest bounds, while combinations with large 
ranges are candidates for elimination. 
 
Computing the parameter bounds for a large 
model will be expensive, so we must focus on the 
simplest tools able to meet the SA needs of 
modellers, model users, catchment managers and 
other stakeholders. The success of SA also 
depends on being able to accommodate model-
output requirements arising in practice and to 
present conclusions in acceptable forms. SA 
needs for integrated simulation models have been 
reviewed as part of the CRC’s programme. 
 
Section 2 discusses the uses of SA and outlines 
the proposed approach, which  underlies some of 
the review questions. Reasons for preferring this 
approach to others are summarised. The review 
questions and answers are given in Section 3, 
which also lists the conclusions. 
 



2. USES OF SENSITIVITY ASSESSMENT 
AND PROPOSED NEW APPROACH 

2.1.  Potential uses of sensitivity assessment  

SA is often equated with probabilistic uncertainty 
analysis, relating distributions of model inputs or 
parameters and the resulting output distributions  
(Saltelli et al., 2000). However, SA may be 
entirely deterministic if the model equations and 
inputs are. A working definition of SA is 
“examination of the relations between variations 
of the inputs and/or parameters of a model and 
the resulting variations of selected outputs”. Only 
if inputs or outputs must be characterised by 
ensemble properties (e.g. climatic variables) need 
SA be probabilistic. Otherwise, responses to 
deterministic change are individually meaningful. 
The review viewed SA as deterministic, but not 
excluding Monte Carlo trials or random search to 
explore sensitivities.  
 
The above definition of SA says nothing about 
uncertainty, although input-to-output mapping of 
uncertainty is one motive for SA. The view taken 
here is that SA and uncertainty specification are 
distinct, although the nature of each affects how 
the other must be done in uncertainty analysis.  
 
An important motive for SA is to focus attention 
on critical parts of the model. Even with physical 
insight, understanding of submodels in an 
integrated model does not ensure insight into the 
overall behaviour. Local responses may have little 
overall significance or be crucial, according to the 
properties of the rest of the model. Environmental 
processes are often low-pass, so the output from a 
series of submodels may be insensitive to error or 
uncertainty in rapid components of a variable 
further up the chain, while accumulation of error 
or uncertainty in slower components may cause 
large output variation. Feedback may strongly 
modify model behaviour. In stable systems, it 
typically reduces the sensitivity of overall 
behaviour to variations or disturbances in the 
forward path, so high input-output sensitivity in a 
submodel may have little overall effect. By 
contrast, a small change in a submodel or in the 
strength or speed of feedback may destabilize a 
marginally stable system such as a stressed 
ecosystem. Systematic SA for the overall model is 
thus essential even if its submodels are well 
understood, to take interactions between 
submodels into account.  
 
In models with many similar sections, SA may 
point to a few crucial parameters or points in 
space and time. It may identify parameters 

determining dominant output modes, or points 
with bad combinations of output variables. 
 
SA may reveal potential for model refinement. 
Large simulation models may well contain near-
redundancies even if time and space intervals 
look suitable, since complex local behaviour may 
aggregate into simple behaviour overall. Removal 
of redundancy makes the model faster, easier to 
test and comprehend, and less prone to ill 
conditioning due to too-fine sampling or poorly 
determined parameters. Model reduction can be 
viewed as a large perturbation, requiring SA to 
check that its effects are acceptable. Conversely, 
SA may uncover a need for finer resolution. 
 
There are also unpredictable benefits from SA, 
such as better insight and discovery of data 
inconsistency. 
 
These uses for SA suggest questions about its 
working context (Section 3) and lead to features 
of the novel approach to SA described next. 

2.2.  Proposed SA approach 

Conventional deterministic SA employs 
perturbation testing to estimate parameter-to-
output derivatives (gradient and Hessian), or 
Monte Carlo (MC) trials. For time-series outputs, 
influence functions express parameter-to-output 
sensitivity, while distributed outputs need spatial 
influence functions. Second derivatives show the 
effects of interacting pairs of parameters and 
approximately quadratic non-linear dependence of 
output on each parameter. Computed derivatives 
have severe limitations: they are generally valid 
only for variations comparable to the 
perturbations; perturbation sizes are difficult to 
select without prior knowledge of sensitivities, 
risking sparse or too-narrow coverage; derivatives 
are generally functions of state, often high-
dimensional, expensive to compute and hard to 
comprehend; and they require outputs to be 
measured on a continuous scale, whereas model 
outcomes may occupy discrete categories, e.g. 
acceptable/not or classified according to rankings 
on conflicting objectives.  
 
The traditional alternative, MC trials to get points 
on the parameter-to-output map, does not rely on 
linearity. It shares the difficulty of choosing a 
range to cover, and sparseness of coverage by a 
given number of trials increases rapidly with the 
number of parameters. A less obvious problem is 
overparameterization, causing parameter values 
which yield output behaviour within the range of 
interest to have a large spread in some directions 
in parameter space but a small spread in others, 
i.e. to be almost in a subspace. Only a small 



proportion of trials then give output behaviour in 
the range of interest; most are wasted. 
 
These limitations have led to a new approach, 
relying less on derivatives and MC trials. It 
formulates SA as translating a list of model-
output requirements into requirements on the 
inputs and/or parameters. For example, we might 
ask over what range of uncertain parameter values 
each output changes by less than a given 
percentage. This amounts to specifying a set of 
equivalent model outcomes, the equivalence set, 
then computing the corresponding  feasible set of 
parameter values. That is, SA is viewed as set-to-
set inverse mapping from the equivalence set 
back through the model into the feasible set. For 
example, we might find the set of parameter 
values in an IHACRES rainfall-runoff model to 
meet given bounds on water availability above 
some flow threshold over a given period. Set 
inversion is also the basis of state bounding and 
parameter bounding (Walter, 1990; Norton, 
1994,1995), but inversion through non-linear 
models has had little attention (Jaulin and Walter, 
1993; Novara and Milanese, 2000).  
 
The use of sets in SA confers great flexibility. 
Outcomes need not even be quantifiable. If they 
are numerical values of outputs, they define the 
equivalence set through inequality constraints. An 
equivalence set arises naturally whenever all 
outcomes meeting some management criteria are 
equally acceptable. Translation from equivalence 
set to feasible set involves either running the 
model repeatedly, discovering the input/parameter 
range by trial and error, or inverting the model to 
determine the feasible set directly from the output 
requirements. This is more efficient but harder, as 
outlined below. In practice, both forward runs and 
model inversion are likely to be needed, for 
economy and accuracy. Set-to-set SA cannot 
avoid all the difficulties of other approaches. 
Scales and resolution for exploring the sets must 
still be found, subject to load. Tracing output 
constraints back through the model is liable to ill 
conditioning, as a low-pass model has a high-pass 
inverse, amplifying wideband noise such as 
rounding error. In some (not all) cases, inverting a 
stable model produces an unstable model; time-
reversal always does. 
 
The following questions for the review of SA 
needs were framed with the set-to-set approach in 
mind. However, many of the conclusions apply 
whatever the approach. 

3. QUESTIONS AND RESPONSES 

To get wide coverage in a short time, the review 
was carried out by discussion among a number of 

experienced developers and users of integrated 
models. It is thus subjective and perhaps partial, 
but is believed to be reasonably representative of 
uses and users of environmental simulation 
models. For best use of space, the conclusions are 
included in this section, italicised, rather than 
reiterating them in a Conclusions section. 

3.1. How are models used in practice? 

The primary motives for running simulation 
models put differing emphases on SA. For 
prediction, detailed SA is needed but only for a 
few scenarios, and perhaps only for outcomes 
showing significant inter-scenario differences.  
 
The review recognised a frequent need for 
improved insight, typically constrained to answer 
immediate management questions: better insight 
into very specific aspects of model behaviour is a 
top-priority motive for SA; improving broader 
insight can’t be ignored but has lower priority. 
 
Attention-focusing was also felt to be an  
important use of SA, requiring initial examination 
of inputs, outputs and internal state variables in 
many operating conditions. However, useful 
insight may still be gained from limited SA, with 
input and parameter values and sensitivities 
known very approximately. As an example, a 
relatively crude sensitivity assessment reveals that 
only three or four of 15 parameters are critical in 
a specific application of the CSIRO SedNet 
sedimentation model (Newham et al., 2003), and 
their physical interpretation suggests that this 
conclusion would remain valid more widely.  
 
SA for points where critical output behaviour 
occurs, e.g. locations with highest salinity under 
irrigation, requires low sensitivity to dubious data 
for the pattern of relative output values, but not 
necessarily high accuracy at each point. The 
review concluded that SA in order  to identify and 
focus attention on critical times and places 
deserves high priority. Typically, one might be 
interested in the relative influences of a number of 
parameters on output variability over an area, and 
more specifically at the worst spots. The effects 
of a few dominant parameters at those few places 
would then be explored in detail. Hence SA tools 
should be designed for iterative use, starting with 
a broad investigation, gradually concentrated 
into a narrowly focused, more precise 
examination. 
 
Discrete, spatially distributed parameters or 
inputs, e.g. crop types, need care in distinguishing 
single- from multi-parameter SA. One qualitative 
parameter (crop type) is varied, but 



computationally there are as many parameters as 
subareas. Each subarea contributes numbers (e.g. 
interception and transpiration coefficients), 
defining a discrete value of a parameter vector. 
Thus SA must handle changes in discrete values 
of input-parameter vectors at multiple locations. 
 
The potential of SA in helping choice between a 
few types and structures of model was thought to 
be of major interest. Set-to-set SA explicitly lists 
the output requirements, preventing vagueness or 
ambiguity in model-performance criteria. 
 
SA of an entire model for model reduction, 
testing all plausible simplifications against all 
performance criteria, is demanding. Piecemeal 
testing, as in submodel development, reduces the 
load. However, the fact that whole-model 
behaviour is not always readily predicted from 
submodel behaviour points to another mode of 
operation of SA: examining overall input-output 
effects of parameters in one submodel at a time, 
to see the overall influence of local changes and 
hence find where simplification is permissible. 

3.2. Who uses models? 

Propective SA users for complex environmental 
models include modellers, experienced users 
(consultants, State agencies, R&D organisations, 
academics), catchment managers and local 
stakeholders (farmers, environmental interest 
groups, local councils). These groups differ 
widely in appreciation of the capabilities and 
limitations of models, technical background, local 
knowledge and breadth of concerns, and make 
very different demands on models and SA. It was 
stressed that catchment managers seldom wish to 
run simulation models, preferring to work through 
modellers and consultants. It was also clear that 
ultimate stakeholders in model outcomes cannot 
be expected to be directly involved in running 
models or in SA. Running simulations and 
performing SA are the province of modellers, 
consultants and expert practitioners in bodies 
such as State government departments. They are 
mostly well equipped to assimilate a new SA 
approach. However, some may be accustomed to 
a probabilistic approach to uncertainty analysis 
and reluctant to accept set-to-set SA. The new SA 
approach must be well publicised as it develops, 
to gain familiarity among prospective users. 
Incorporation of distributional information into 
set-to-set SA (discussed later) is also important. 
 
The gulf between what analysis techniques for 
large models or data sets are on offer and what 
users need was emphasised; analysis problems 
tend to be oversimplified to allow neat solutions, 
ignoring practical constraints and complications. 

Lack of useable analysis often results in misuse or 
indiscriminate use of elaborate models. This 
underlines an urgent need to provide more 
flexible, easily applied SA methods, able to inform 
users about the reliability of model results. 
 
A strongly exppressed opinion was that 
exploratory SA tools, useable without extensive 
training, are needed, not a comprehensive, 
integrated package. In an academic environment, 
there are additional reasons for developing 
software as self-contained items: software 
engineering resources are scarce, short contracts 
make continuity problematical, and informal 
software exchange and modification make version 
control, maintenance and attribution difficult. 
 
The inertia, conservatism, caution or common 
sense of stakeholders was stressed, implying that 
for new SA tools to be accepted, they must be 
expressible in non-technical terms, and must 
provide reliability information for the stakeholder 
to balance predicted benefit and risk of an action. 
If the SA process is not so transparent as to 
engender trust, it must give managers the means 
to convey a fair impression of model reliability.  

3.3. What is the likely scope of an SA query? 

Specifically, what information does an SA user 
want; are many uncertain items likely to be 
examined at once; how complex is each likely to 
be (e.g. many points in space or time at once, or 
one at a time); are only inputs and outputs to be 
examined, or state also [a state variable in a 
simulation run being invisible unless also an 
output. Traditional SA does not find input-state 
and state-output sensitivities]; are sensitivities to 
initial or other boundary conditions needed? 
 
The review stressed that the scope of SA is 
limited by inability to model, or even understand, 
behaviour in detail. An example is groundwater 
modelling, with limited access through bores and 
the system often geologically heterogeneous. 
Thus aggregation is often forced on SA, and 
further aggregation may be necessary to present 
SA reults in a readily understood form.  
 
Other significant points made were that (i) each 
SA investigation is likely to concern only a few 
parameters and simple output metrics, but they 
may summarise complex spatio-temporal 
behaviour; (ii) small output changes are the norm 
in management, with little risk of large-scale 
changes (with exceptions, e.g. potential ecological 
disasters); (iii) thresholds affecting outputs may 
make input-output linearity a poor approximation 
even for small changes, so SA should show how 
far the input-output relations, or input-state and 



state-output relations, deviate from linearity; (iv) 
small output changes predominate but there may 
be high uncertainty in parts of the model; (v) 
degree of detail in models and SA may be 
severely limited by variability of the variables and 
by data availability, a good example being 
nutrient modelling; (vi) the potential of model 
inversion in helping a manager determine where 
to intervene is a major benefit of the proposed SA 
approach. Such intervention is often about land 
use, where set-to-set SA must deal with spatial 
outcomes; (vii) environmental information gets 
thinner as one goes back in time, and models 
often employ time and space intervals unjustified 
by the data. SA should provide guidance on 
choice of spatio-temporal intervals and record 
lengths. SA might borrow heuristics from 
parameter estimation, for models close enough to 
linearity to have distinguishable dynamical 
modes. For parameter estimation in linear models, 
relations between record lengths, sampling rates, 
time constants and signal:noise ratios are well 
established. In stiff systems, analysis may be split 
into two stages, investigating fast dynamics while 
treating the rest as drift, and separately the slower 
dynamics while treating the rest as instantaneous.  
 
Opinions varied on how far SA need consider 
state. Model builders consider state, but non-
modellers will not often want to delve inside a 
model. It is not immediately obvious that SA 
must consider state; running a model for a range 
of input/parameter values, recording outputs but 
not state, might seem to be enough. This is not so, 
as the output depends not only on the preceding 
input but also on the initial, and hence current, 
state. Consider a linear rainfall-runoff model 
feeding a finite storage. At onset of overflow, the 
relation between rainfall and flow from storage 
changes sharply with the volume stored, a state 
variable. Even in linear models, initial-condition 
response may be non-negligible. If a series of 
simulation runs can give the input-output relations 
and their sensitivities for the entire realistic range 
of antecedent state and any other relevant 
boundary conditions, state is just an invisible 
intermediary between inputs and outputs. Even 
then, it may be worth looking at state in SA, as 
models are often much simpler (in structure, not 
number of variables) in state-space form than in 
input-output form. In non-linear models, a further 
reason is the need to explore state space well 
enough to avoid invalid generalization. 
 
The implications are (i) SA must give experienced 
practitioners the option of expressing the model 
in state-space form; (ii) SA must provide choice of 
how far to consider state, and should allow trial-
and-error choice of which state variables to 

worry about; (iii) for non-expert SA consumers, 
the interface should conceal the state unless 
asked to show it; (iv) SA should give guidance on 
what aggregation is permissible in presenting 
outcomes of a detailed spatio-temporal model. 
 
Responses about whether boundary conditions 
must be included as parameters in SA were: (i) 
initial conditions are usually known quite well 
and do not require SA (subject to the comments 
above about initial state); (ii) other boundary 
conditions are an issue for SA, e.g. groundwater 
distribution or areal rainfall pattern (which might 
be treated as forcing). That said, the larger the 
spatio-temporal scale, the less SA need analyse 
the influence of detailed boundary conditions, 
since more averaging is acceptable. 

3.4. How is the equivalence set to be specified? 

Model-output requirements are to be expressed as 
bounds on measures of output spatio-temporal 
behaviour, e.g. water available for irrigation in a 
given period. Bounds on  
• instantaneous values of variables 
• integrals of variables (e.g. annual income) 
• variation (e.g. environmental flows) 
• distribution (e.g. proportion of river-flow 

values above a threshold), and 
• the rank in an ordering (e.g. of economic 

outcomes in alternative scenarios) 
had been foreseen. The review added bounds on 
• the frequency of events, e.g. wetting of trees 
• both the size of events and the intervals 

between them, e.g. overbank flows 
• measures of cumulative impact 
• weighted spatial outcomes, e.g. salinity 

weighted by local seriousness, water quality 
weighted at extraction points, different 
weights for Crown or private land. 

This diversity of types makes heavy demands on 
the mechanics of model inversion, but all are 
readily handled in forward runs, by simply  
checking outcomes against their bounds. 

3.5. How should SA results be presented? 

This asks what information SA should produce,in 
what form, not just what the user interface is. 
Hard-to-meet user demands must be recognised 
early in SA design. It was suggested that users 
need time series, cumulative distributions (e.g. 
flow-duration curves) and two-dimensional 
pictures. Plots of residuals against input could be 
extended to show residuals moving with 
parameter values. There is scope for presenting 
some higher-dimensional results, e.g. “spider 
plots” showing changes in a two-variable relation 
as a parameter is varied in steps, or Andrews 



curves (Andrews, 1972) comparing parameter 
vectors in four or more dimensions. Visualisation 
methods exist for up to about 6 dimensions but 
are hard to interpret and not thought useful. 
 
These conclusions influence what features of the 
feasible set are extracted. The set is an object, 
perhaps complicated, with as many dimensions as 
free parameters. In three or more, it is difficult to 
visualise unless approximated by a simple shape, 
e.g. a box (bounds on individual parameters). It is 
proposed that feasible sets for three or more 
inputs or parameters be presented as two-
dimensional cross sections or one-dimensional 
features such as largest and smallest diameters. A 
set of feasible trial points forms a large 
multivariate data set from which principal-
component analysis (PCA) can extract some one-
dimensional features. PCA is too limited for SA, 
but the idea of  extracting extents in significant 
directions is applicable to feasible sets. 
 
Assessment of extremes (e.g. salinity hot spots) 
poses the danger of assuming that extremes 
translate to extremes, implying that the feasible-
set boundary is determined by the equivalence–set 
boundary and vice versa. Input-output or 
parameter-output relations may well be non-
monotonic. If tail histogram bins (top and bottom 
segments of cumulative distribution functions) of 
measured outputs are examined, combinations of 
non-extreme input values are often responsible for 
them Thus one role of SA is to enquire into 
monotonicity of input/parameter-output relations, 
and to identify what causes extreme outputs. 

3.6. What alternatives for defining input and 
output behaviour should be considered? 

Set-to-set SA avoids hard-to-test distributional 
assumptions, nor does it require all inputs, 
parameters and outputs to be quantifiable and 
continuous. These advantages are not confined to 
plain sets; graded deterministic entities might be 
used. Plain sets label values only as in or out of 
the set. There is no indication of the margins by 
which a feasible value meets the output 
requirements, or how far an unfeasible value is 
from meeting them. Fuzzy sets (Zadeh, 1965) 
have for each relevant set a membership degree 
between zero and 1, assigned to every variable or 
parameter value by expert knowledge. Fuzzy sets 
were felt to be unappealing because of their 
subjectivity and the many parameters required to 
specify membership functions. Rough sets 
(Pawlak, 1982) classify values as in the set, not in 

it or “don’t know”. The consensus was that use of 
rough sets in SA should be kept open as a 
possibility. They may be computable by interval 
analysis (Jaulin and Walter, 1993) or combining 
outer-bounding and inner-bounding feasible sets. 
 
A third possibility is to specify two or more pairs 
of bounds on each output, defining a coarse 
histogram, e.g. wide bounds covering all credible 
or acceptable values and narrow ones for the great 
majority. Each is mapped to the parameters/input.  

3.7. SA to help scaling and regionalisation? 

A submodel at one spatial or temporal scale may 
be integrated into a model at another, so SA must 
consider rescaling. The appeal of physically 
interpretable parameters in guiding rescaling was 
stressed, even at the expense of parsimony. The 
point was made that dependence on the operating 
point (state) and parameter values makes the 
admissibility of rescaling hard to assess. 
Investigation of the sensitivity of scaled results to 
varying state, parameters or parameterisation is 
therefore a significant potential use of SA. 
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