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Abstract:  Related commodity markets have two characteristics: (i) they may follow similar volatility 
processes; and (ii) such markets are frequently represented by a market aggregate or index. Indices are used to 
represent the performance and time series properties of a group of markets. An important issue regarding the 
time series properties of an index is how it reflects the time series properties of its components, particularly 
with regard to volatility. In this paper, correlation matrices are derived from rolling AR(1)-GARCH(1,1) model 
estimates to examine the second and fourth moment properties of ARMA processes with GARCH errors, and 
are also compared with the properties of the individual returns series. The correlations between the volatility of 
returns on several 3-month non-ferrous metals futures contracts traded on the London Metal Exchange are 
examined for aluminium, copper, nickel, lead, tin and zinc. Relationships between the volatility of individual 
metals returns and returns on the London Metal Exchange Base Metal Index are also examined.  
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1. 

2. 

INTRODUCTION 
 

Market aggregates (or indices) based on equities, 
commodities, or other classes of assets are used 
frequently in finance. Empirical modelling in this 
paper focuses on the recently launched London 
Metal Exchange Base Metals Index (LMEX) of the 
London Metal Exchange (LME), an index of spot 
and futures prices for the six primary metals traded 
on the LME. The LMEX is expected to perform an 
informational role for participants in the LME spot, 
futures and options markets. Moreover, the index is 
investible through futures and traded options 
contracts, based on the level of the index, that are 
available on the LME. In contrast to the LME metals 
futures and options, those for the index are familiar 
to financial market participants in that there is no 
element of physical delivery, and the contracts are 
cash settled. An index futures contract provides a 
convenient vehicle for investors to gain exposure to 
industrially-used non-ferrous metals markets without 
having to participate in one of the existing physical, 
futures or options markets at the LME. Such 
investors would be interested in the risk of the index 
relative to the risk in the primary non-ferrous metals 
markets, that is, the risk relationships between the 
markets on the LME and the index. 
 
The volatility of the LMEX is compared with that of 
a subset of its components by analysing the 
correlations between rolling generalised 
autoregressive conditional heteroskedasticity 
(GARCH) processes for each individual series and 
the index. Estimated parameters, t-ratios, and 
moment conditions are generated using univariate 
rolling GARCH models. Correlation matrices are 
generated for the α and β estimates, their t-ratios, 
and the second and fourth moment conditions. The 
estimates, t-ratios and moment conditions of the 

rolling GARCH model are treated as ‘data’ in the 
sense that inferences are drawn regarding the 
relationships between the index and its components, 
and between the components themselves, by 
examining the correlations between the series of 
estimates, t-ratios, and moment conditions.  
 

TIME-VARYING VOLATILITY MODEL 
 

Bollerslev's (1986) GARCH model is used in the 
empirical analysis. The GARCH(1,1) specification is 
the most widely used model in the financial 
volatility literature, and is considered to represent 
adequately the observed symmetric intertemporal 
dependencies in daily returns of many financial time 
series. The conditional mean of futures price returns 
is given by the stationary AR(1) model: 
 
rt = µ +ϕrt −1 +εt ,   ϕ < 1, (1) 
 
and the conditional variance of εt is given by: 
 

ttt hηε = , (2) 

ht = ω +αεt−1
2 + βht −1 , (3) 

 
where rt denotes the returns on the futures price from 
period t-1 to t; εt is the unconditional shock; ηt is a 
sequence of independently and identically 
distributed random variables with zero mean and 
unit variance; and ht is the conditional variance of 
returns. For the GARCH process to exist, ω > 0, α ≥ 
0 and β ≥ 0 are sufficient conditions for the 
conditional variance to be positive. The ARCH 
coefficient, α, measures short run persistence in 
volatility, and the GARCH effect, β, measures the 
contribution to long run persistence, namely α+β. 
 

 



 

Several statistical properties have been established 
for the GARCH(p,q) process in order to define the 
moments of the unconditional shock. Ling and 
McAleer (2002a) derived a necessary and sufficient 
condition for the existence of moments of a family 
of GARCH processes, which includes the 
GARCH(1,1) model. Furthermore, Ling and 
McAleer (2002b) established the moment conditions 
for GARCH(p,q), and related the moment conditions 
to the statistical properties of the models, namely 
consistency and asymptotic normality. The 
implications of the non-existence of moment 
conditions, such as possible inconsistency of the 
parameter estimates and invalid inferences, have 
typically been ignored in the empirical literature on 
modelling volatility using GARCH-type processes.  
 
The necessary and sufficient condition for the 
second moment of the GARCH(1,1) model to exist, 
which is equivalent to the GARCH(1,1) process 
being strictly stationary and ergodic, is given by: 
 
α+ β <1. (4) 
 
If the standardised (or conditional) shocks, ηt, are a 
series of normally, independently and identically 
distributed random variables, the fourth moment of 
the unconditional shock will exist if and only if the 
following condition is satisfied: 
 
3α 2 +2αβ +β 2 <1. (5)  M
 
Prior to modelling the volatility of the series using 
AR(1)-GARCH(1,1), a specification search was 
conducted for both the mean and the variance. The 
GARCH(1,1) model was chosen to represent the 
variance process of the series. A higher-order 
GARCH process or a fractionally integrated 
GARCH (FIGARCH) model may also represent the 
volatility process for metals returns (Teyssiere, 
Brunetti and Gilbert, 1997). The GARCH(1,1) 
model performs adequately and the trade-off for 
parsimony, tractability and moment conditions are 
reasons for preferring the GARCH model. In order 
to conduct a correlation analysis between estimates 
of the model for various markets, using an adequate 
and parsimonious model permits more meaningful 
interpretations of the rolling correlations. Estimates 
of the coefficients of the conditional variance were 
not sensitive to changes in the specification of the 
AR(1) conditional mean equation. 
 
A procedure was programmed in EViews 3.1 to 
estimate the AR(1)-GARCH(1,1) model using a 
rolling sample window of 1000 observations, which 
is approximately 4 years of trading days, over the 
entire data set. Recent research on optimal window 
sizes in rolling GARCH models suggests using 3 or 
4 years of daily data to estimate the model (Yew, 
McAleer and Ling, 2001), as windows of this size 
are shown to produce stable estimates and moments. 
The rolling window procedure begins with the first 
1000 observations being used to estimate the model. 

Then the estimation interval is moved one-day into 
the future by deleting the first trading day and 
adding an extra day at the end of the sample 
window, and the parameters of the model are re-
estimated. Each model is estimated by the maximum 
likelihood method, with the Marquardt algorithm 
used to maximise the likelihood function 
numerically. In the absence of normality of ηt, 
Quasi-Maximum Likelihood Estimators are 
obtained. This procedure is repeated 902 times. 
 
In order to examine the structure of relationships 
between the estimated returns volatility processes 
for the LME metals and LMEX, correlations 
between the rolling estimates of the different metals 
models are analysed. These correlations are 
generated for the matrices described below. 
Correlations of the estimates are used to gain 
insights into the relationships between the estimated 
GARCH volatility processes, the short and long run 
persistence of volatility in related non-ferrous metals 
markets, and the closeness of LMEX to the volatility 
properties of its underlying assets. 
 
Correlation matrices of the following form are 
created for each set of rolling α and β estimates, 
their robust t-ratios, and the second and fourth 
moment conditions: 
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where Ρ denotes the correlation matrix, and ρ is the 
correlation between the estimates, robust t-ratios, 
moments of metals i and j, and metal I and LMEX.  
 
3. THE DATA 
 

The LMEX, which was launched in April 2000, is a 
linear combination of 1-, 2- and 3-month futures 
prices for six non-ferrous metals traded on the 
exchange, namely aluminium, copper, nickel, lead, 
tin and zinc. However, the LMEX data used in this 
paper were constructed retrospectively by the LME, 
which provides a sufficiently large sample for the 
analysis. Construction of the index is given as: 
 

I = c0 wm × p j,m
j=1

3
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where I is LMEX, c0 a constant chosen to normalise 
the index to 1000 on 4 January 1999, m represents 
the 6 metals, wm is the weight for each metal, and 
pj,m is the futures price for metal m with maturity j. 
 
Weights for each metal in the index are based on the 
proportions of global production and LME trading 

 



 

volumes (liquidity) of each metal over the previous 
five years. Index weights are revised annually, with 
the new weights applying on the first trading day of 
July each year. Aluminium and copper are the most 
important metals in the index, weighted at 0.4 and 
0.34, respectively. The weights of all the 
components remain relatively unchanged over the 
sample period. Daily data were obtained from the 
LME for 3-month futures prices for six non-ferrous 
metals, namely aluminium, copper, nickel, lead, tin 
and zinc, and for the LMEX. The 1-month and 2-
month futures price series used in conjunction with 
the 3-month futures price to create the index were 
not available. Data cover the period 1 July 1992 to 
10 January 2000, to provide 1902 trading days.  
 
The logarithmic returns were calculated as follows: 
 
ri,t = ln pi,t − ln pi,t−1,   (8) 
 
where ri,t is the return for metal i from t-1 to t, and 
pi,t is the futures price, or index value series for 
metal i. Calculating the returns provides a sample of 
1901 observations for the empirical analysis.  
 
Typical attributes of commodity time series are 
apparent in the plots of the prices and returns. For 
the prices, these include periods of upward and 
downward trend, turning points, and structural 
breaks. The index follows a pattern loosely 
resembling the two major constituent parts, 
aluminium and copper, which are somewhat similar 
in terms of trends and turning points. For 
aluminium, copper and nickel, the index coincides 
with periods of upward and downward trends in the 
components. Lead and tin price series follow a 
similar pattern, while the zinc futures price follows a 
different trend. Within a long period of downward 
trend in copper prices, a steep decline in copper 
prices occurs between May and June 1999 as a result 
of the collapse of manipulation activities in the 
copper market by Sumitomo Corporation of Japan.  
 
All the component series exhibit a significant 
amount of volatility and volatility clustering. 
Relative to its constituents, the LMEX returns series 
contain no extreme observations, so that no large 
returns shocks are present in the index. However, to 
some extent, component outliers influence the index. 
For example, two extremes in the copper market 
(observations 997 and 1000) appear to affect the 
index. Copper dominates the index during this time, 
due primarily to there being little activity in the 
other markets. While volatility clustering can be 
seen in the aggregate series, the degree is less than is 
evident in the components. 
 
4. CORRELATION OF THE ESTIMATES 
 

4.1 Rolling α Estimates  
Table 1 gives the correlation matrix for the seven 
sets of rolling α estimates. Correlations between 

different elements of the correlation matrix vary 
between a low positive correlation of 0.0594 and a 
high positive correlation of 0.9259, and a low 
negative correlation of –0.0603 to a moderate 
negative correlation of –0.4637. The α estimates for 
three metals returns series show a high and positive 
correlation with the α estimates for the index 
returns, namely copper, nickel and tin. Moreover, 
the α estimates for these metals are highly correlated 
with each other. Aluminium is the most important 
metal in the index by weight. However, aluminium 
is only moderately correlated with the index. It is 
also moderately correlated with every other 
component metal. The correlation is negative 
between aluminium and lead, while for the other 
metals it is positive. Both the lead and zinc α 
estimates show a small and negative correlation with 
those of the index, while being moderately 
negatively correlated with each other. Lead has a 
low positive correlation with metals that are highly 
correlated with the index, namely copper, nickel and 
tin, while zinc shows a low negative correlation with 
the same metals. Zinc is negatively correlated with 
all metals except for aluminium. 
 
The correlation matrix for the α estimates shows that 
the short run volatility effects are highly correlated 
between some markets but not others. Four of the six 
metals have highly correlated short run volatility 
effects with the index, while two have very small 
negative correlations. The two largest constituents of 
the index, namely aluminium and copper, have 
substantially different correlations between their α 
estimates, and that of the index. 
 
4.2 Rolling α Estimate Robust t-Ratios 
As the residuals are suspected not to be 
conditionally normally distributed, quasi-maximum 
likelihood (QML) covariances and standard errors 
using the methods described by Bollerslev and 
Wooldridge (1992) are used. Even when the 
residuals are not conditionally normal, the α 
parameter estimates are consistent, provided the 
mean and variance functions are correctly specified. 
Under these circumstances, the estimate of the 
covariance matrix is consistent using QML 
covariances, so that the t-ratios and standard errors 
will be valid. 
 
In Table 2, the correlation matrix for the t-ratios of 
the seven sets of rolling α estimates is presented. 
The correlations between the rolling robust t-
statistics of each series of α estimates reveal several 
interesting relationships. Movements in the t-ratios 
of the α estimates are positively correlated among 
the individual metals, and between each metal and 
the index. In general, these positive correlations are 
also high in magnitude. However, the exception to 
this general observation is for any correlations 
involving lead, which are always low to moderate. 
The high positive relationship between changes in 
the robust t-ratios for the α estimates in most models 
indicates that changes in t-ratios and the importance 

 



 

of the short run effects in volatility, are closely 
related between the models in the rolling windows. 
 
The correlation matrix indicates that there is 
generally a high correlation between the short run 
volatility effects, in that the significance and change 
in significance of the α estimates are highly 
correlated. However, this is in contrast to the 
correlation between the rolling α estimates 
themselves, which presented a less consistent set of 
relationships between the various individual metals 
and the index. In terms of the t-ratios, shocks have 
similar short run effects on each market, and this 
translates through to the index as the aggregation of 
similar component effects means the index has 
comparable properties. The exception is lead, where 
the change in significance of the short run effect of 
shocks appears to be different. 
 
4.3 Rolling β Estimates 
The correlation matrix for the rolling β estimates is 
provided in Table 3. Correlations between the 
rolling β estimates range from –0.3920 to 0.8977, 
and highlight the substantially different behaviour of 
long run persistence in various markets. Overall, the 
level of correlation between the β estimates appears 
to be lower and less homogeneous than the 
correlation between short run persistence. Only the 
copper β estimate has a high positive correlation 
with that of the index. Aluminium, tin and zinc β 
estimates show a moderate and positive correlation 
with the aggregate series. There is a low and 
negative correlation between the index and both 
nickel and lead. Clearly, there are disparate GARCH 
effects among the components when compared with 
the index. 
 
Generally, those components with a moderate or 
high positive correlation with the index are 
themselves moderately correlated. This is the case 
for aluminium and copper, aluminium and zinc, 
copper and tin, and copper and zinc. Exceptions 
include aluminium and tin, and tin and zinc, both of 
which have a low positive correlation. The two 
major components of the index themselves are only 
moderately positively correlated. Metals with a 
moderate or high positive correlation with the index 
have a low positive, low negative or moderate 
negative correlation with those metals which have a 
low negative correlation with the index. Aluminium 
and tin, and zinc and tin, display low positive 
correlations. While moderately correlated with the 
index and copper, tin is only slightly correlated with 
the other major component, aluminium. Copper and 
nickel, copper and lead, and tin and lead, have low 
negative correlations between their rolling β 
estimates. Zinc has a moderate positive correlation 
between its estimates and those of both nickel and 
lead. The only component metals to have a high 
positive correlation with each other are nickel and 
lead at 0.8771, which are those metals that displayed 
both a low and negative correlation with the index. 
Lead and nickel also exhibit low correlations with 

the major components of the index, positive in the 
case of aluminium and negative for copper.  
 
The correlation matrix for the rolling β estimates 
highlights a number of interesting relationships in 
the contribution of β to the long run volatility 
persistence in metals returns and returns on a metals 
index. Obviously, the autoregressive (or declining 
memory) effects of volatility shocks on the different 
markets can be systematically dissimilar for the 
various metals, possibly relating to different 
underlying fundamentals in these markets, different 
relationships with demand generated by industrial 
production, stocks and supply-side factors, and 
different supplementarity and complementarity 
relationships among the metals. The GARCH effect 
in the index is most closely related to the copper 
market, and somewhat less related to the aluminium, 
zinc and tin markets. In this regard, the lead and 
nickel markets bear little relation to the index. 
 
4.4 Rolling β Estimate Robust t-Ratios 
Table 4 provides the correlation matrix for the β 
estimate robust t-ratios for each model. The 
correlation between the t-ratios of the index and of 
its components is negative for copper, tin and zinc, 
and positive for aluminium nickel and lead. Lead 
shows the largest correlation in absolute magnitude, 
followed by aluminium, both of which show a 
moderate correlation with the index at 0.3920 and 
0.3268, respectively. In absolute magnitude, there is 
a low level of correlation between the index and 
each of copper, nickel, tin and zinc. None of the 
models for the components produces a t-ratio that 
has a high correlation with the index, either positive 
or negative. While the copper β estimates are highly 
positively correlated with those of the index, the 
correlation between their respective t-ratios is 
negative and close to zero. Similarly, the β estimate 
for tin is moderately positively correlated with that 
of the index, but there is a low negative correlation 
between the respective t-ratios.  
 
Most component metal β estimate t-ratios exhibit 
low (absolute) correlations, and of these nine, seven 
are negative. Those with low negative correlations 
are aluminium and tin, aluminium and zinc, copper 
and nickel, nickel and zinc, lead and tin, lead and 
zinc, and tin and zinc. Copper and zinc, and nickel 
and tin, have low positive correlations with each 
other. Zinc β estimate t-ratios have a low correlation 
with the other six series, and these correlations are 
negative for all the series except copper. Similarly, 
low correlations exist between the tin t-ratios and 
those of the other metals, and all but the correlations 
with copper and nickel are negative. Lead and 
aluminium t-ratios are the most highly correlated at 
0.7049, followed closely by lead and nickel. 
Furthermore, nickel t-ratios are moderately 
positively correlated with those of aluminium and 
lead. Interestingly, the copper t-ratios have a 
moderate and negative correlation with the other 
major component, aluminium, and also with lead.  

 



 

and lead, neither the α nor β estimate correlations 
with LMEX bears any resemblance to the second 
moment correlations. While each has a low positive 
correlation in the second moments with the index, 
nickel has a high positive and low negative 
correlation in the α and β estimates, respectively, 
and lead has a low negative correlation for both. 

Comparing the β estimate correlations with the β t-
ratio correlations reveals that relationships between 
the estimates of specific metals are not necessarily 
present between their respective t-ratios. Aluminium 
and copper t-ratios are negatively correlated, while 
their β estimates are positively correlated. Although 
the correlation between the copper and LMEX β 
estimates is high, the correlation between their t-
ratios is close to zero. Aluminium, tin and zinc β 
estimates are moderately positively correlated with 
the index, but their t-ratios show a substantially 
lower correlation, which is negative for tin and zinc. 
However, nickel and lead have the highest 
correlation between the β estimates, and the second 
highest correlation between their t-ratios. Clearly, 
the pattern of correlations between the β estimates 
and their t-ratios is dissimilar in many cases. 

 
Second moment correlations involving only pairs of 
the minor components are low (either negative or 
positive), except for the correlation between nickel 
and lead. All the correlations between aluminium 
and the other components are moderate and positive, 
except with zinc, which is low and positive. The 
correlations between the tin second moments and the 
other components are also all positive, and mostly 
low in magnitude. Copper, nickel, lead and zinc 
show both positive and negative correlations with 
the other components, the magnitude of which can 
vary between 0.9194 and 0.0177. 

 
4.5 Second Moment Condition 
Second moment conditions were satisfied for all 
metals and the index. Table 5 contains the 
correlation matrix between the rolling second 
moments for seven variables. The correlation matrix 
for the second moments indicates the relationship 
between long run persistence for the seven series. 

 
4.6 Fourth Moment Condition 
The fourth moment condition was satisfied for all 
the rolling models for aluminium, copper, nickel, 
lead and LMEX. Exceptions were tin and zinc, 
where the condition for the existence of the fourth 
moment was satisfied in 97% of the rolling models 
in each series. The correlation matrix for the fourth 
moments is given in Table 6. Substantial differences 
exist between the individual correlations for the 
fourth moments in Table 6 and the rolling second 
moments in Table 5. Aluminium has the highest 
fourth moment correlations with the index, followed 
closely by copper. However, the major components 
display only a moderate positive correlation with the 
fourth moments of LMEX, as compared with a high 
positive correlation in second moments. All minor 
components exhibit low positive correlations with 
the index. The relationship between the index and 
both nickel and lead is slightly stronger for the 
fourth moments, but the opposite is true for tin. In 
the case of zinc and the index, the correlation 
between the fourth moments is substantially lower 
than between the second moments. 

 
Aluminium and copper both have high correlations 
in volatility persistence with the index. While both 
are highly correlated with the index, they only show 
a moderate positive correlation with each other. 
Comparisons can be made with the α and β estimate 
correlations shown in Tables 1 and 3. Correlations in 
the second moments of the index and aluminium are 
much higher than for either the α or β estimates, 
while relationships between the index and copper, 
and between copper and aluminium, are similar. 
 
Correlations between the component second 
moments and those of the index are positive. This 
contrasts with the α estimate correlations, in which 
lead and zinc had negative relationships with the 
index. The β estimate correlations involving LMEX 
were also not uniformly positive, with nickel and 
lead having negative relationships with the index. 
Tin and zinc show moderate second moment 
correlations with the index, while nickel and lead 
second moments have a low correlation with the 
index moment. An explanation for the low 
correlation between both nickel and tin with the 
index may lie in the structural change observed in 
the second moments of both component metals. Not 
surprisingly, the second moments of nickel and lead 
are high and positively correlated. At 0.9194, nickel 
and lead have the highest correlation among any of 
the components, followed by copper and zinc with 
0.8825, and aluminium and copper with 0.6482. 

 
The fourth moments for aluminium and copper have 
a low positive correlation with each other, even 
though they are the major components of the index, 
and are both moderately correlated with the index. 
Furthermore, the correlation between the aluminium 
and copper fourth moments is substantially lower 
than the correlation between their respective second 
moments. However, the correlation between 
aluminium and both nickel and lead is high in terms 
of the fourth moments, but moderate for the second 
moments. Copper, the other major component, 
shows a low and negative correlation in fourth 
moments with both nickel and lead. The correlation 
between nickel and lead themselves is the highest 
observed among the component metals, at 0.9426. 
This relationship is even stronger for the fourth 
moment than for the second moment. Negative 
fourth moment correlations exist between zinc and 

 
For tin and zinc, the long run persistence correlation 
dominates the second moment correlations with the 
index. For the α estimate correlations, tin has a high 
positive relationship with the index, while zinc has a 
low  negative correlation with the index.  For  nickel  

 



 

all metals except copper. Tin is moderately 
correlated with aluminium, nickel and lead, but has a 
low positive correlation with copper, and a low 
negative correlation with zinc. 
 
5. CONCLUSION 
 
While not reflecting shocks to a metal or a sub-
group of metals in the data set, the LMEX shows 
reasonably high correlations with short run volatility 
effects, but substantially lower correlations with the 
contributions to long run volatility effects. While the 
α estimates are small, the estimates and t-ratios are 
generally highly correlated. The β estimates and t-
ratios are somewhat less correlated. In response to a 
shock, the ARCH volatility effects are more similar 
than the GARCH volatility effects across metals, 
and between each metal and the index. Long run 
persistence correlations among non-ferrous metals 
are frequently much greater than the corresponding 
correlations for the β estimates. Furthermore, the 
long run persistence correlation between the index 
and both of the major components is high, although 
the correlation for copper is lower than are the 
correlations for the α and β estimates. In contrast, 
the long run persistence correlation between the 
index and aluminium is substantially greater than for 
both the α and β estimates.  
 
Long run persistence correlations may reveal 
relationships between fundamentals driving each 
metals market, such as consumption, production and 
stock levels, macroeconomic influences, or market 
related factors such as liquidity. Furthermore, 
aluminium and copper are the largest markets on the 
LME, and have high liquidity, while nickel, lead, tin 
and zinc do not have the same levels of liquidity. 
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Table 1: Rolling α estimate correlations 

Series Aluminium Copper Nickel Lead Tin Zinc

Aluminium 1.0000 0.4897 0.5092 -0.4055 0.6032 0.4389
Copper 0.4897 1.0000 0.8599 0.1233 0.9206 -0.1709
Nickel 0.5092 0.8599 1.0000 0.1287 0.8217 -0.1517
Lead -0.4055 0.1233 0.1287 1.0000 0.0594 -0.4637
Tin 0.6032 0.9206 0.8217 0.0594 1.0000 -0.0603
Zinc 0.4389 -0.1709 -0.1517 -0.4637 -0.0603 1.0000
LMEX 0.6662 0.9259 0.8660 -0.0597 0.9072 -0.0596

 
 

Table 2: Rolling α estimate t-ratio correlations 
Series Aluminium Copper Nickel Lead Tin Zinc

Aluminium 1.0000 0.7085 0.8830 0.3082 0.9035 0.7636
Copper 0.7085 1.0000 0.8309 0.6502 0.7748 0.7709
Nickel 0.8830 0.8309 1.0000 0.4460 0.9309 0.8368
Lead 0.3082 0.6502 0.4460 1.0000 0.4087 0.4947
Tin 0.9035 0.7748 0.9309 0.4087 1.0000 0.8446
Zinc 0.7636 0.7709 0.8368 0.4947 0.8446 1.0000
LMEX 0.8953 0.8575 0.9694 0.4468 0.9472 0.8684

 
 

Table 3: Rolling β estimate correlations 
Series Aluminium Copper Nickel Lead Tin Zinc

Aluminium 1.0000 0.4492 0.0778 0.1396 0.1784 0.4889
Copper 0.4492 1.0000 -0.1902 -0.2407 0.6247 0.5888
Nickel 0.0778 -0.1902 1.0000 0.8771 0.0421 -0.3920
Lead 0.1396 -0.2407 0.8771 1.0000 -0.0612 -0.3585
Tin 0.1784 0.6247 0.0421 -0.0612 1.0000 0.2574
Zinc 0.4889 0.5888 -0.3920 -0.3585 0.2574 1.0000
LMEX 0.5883 0.8977 -0.1611 -0.1810 0.4952 0.5629

 

 
Table 4: Rolling β estimate t-ratio correlations 

Series Aluminium Copper Nickel Lead Tin Zinc

Aluminium 1.0000 -0.5648 0.5002 0.7049 -0.1050 -0.0212
Copper -0.5648 1.0000 -0.2750 -0.5468 0.3056 0.0671
Nickel 0.5002 -0.2750 1.0000 0.6515 0.0813 -0.0649
Lead 0.7049 -0.5468 0.6515 1.0000 -0.0959 -0.0244
Tin -0.1050 0.3056 0.0813 -0.0959 1.0000 -0.1980
Zinc -0.0212 0.0671 -0.0649 -0.0244 -0.1980 1.0000
LMEX 0.3268 -0.0695 0.1887 0.3920 -0.0345 -0.1154

 
 

Table 5: Rolling second moment correlations 
Series Aluminium Copper Nickel Lead Tin Zinc

Aluminium 1.0000 0.6482 0.5469 0.5895 0.4869 0.3634
Copper 0.6482 1.0000 -0.0785 -0.0177 0.3985 0.8291
Nickel 0.5469 -0.0785 1.0000 0.9194 0.3681 -0.2765
Lead 0.5895 -0.0177 0.9194 1.0000 0.3019 -0.2167
Tin 0.4869 0.3985 0.3681 0.3019 1.0000 0.2516
Zinc 0.3634 0.8291 -0.2765 -0.2167 0.2516 1.0000
LMEX 0.8241 0.8825 0.1822 0.2424 0.4358 0.6198

 
 

Table 6: Rolling fourth moment correlations 
Series Aluminium Copper Nickel Lead Tin Zinc

Aluminium 1.0000 0.2929 0.7592 0.7617 0.5570 -0.1511
Copper 0.2929 1.0000 -0.1864 -0.1441 0.1443 0.6618
Nickel 0.7592 -0.1864 1.0000 0.9426 0.5393 -0.4295
Lead 0.7617 -0.1441 0.9426 1.0000 0.4564 -0.3806
Tin 0.5570 0.1443 0.5393 0.4564 1.0000 -0.0987
Zinc -0.1511 0.6618 -0.4295 -0.3806 -0.0987 1.0000
LMEX 0.6934 0.6655 0.3299 0.3490 0.3805 0.1484
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