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Abstract: In the last decade, Australia had applied a large program of privatisation in many sectors of the 
economy.  As a result, the power industry has been deregulated and undergone partial privatisation, creating 
new specific issues. In present, the bid price has a crucial role in the unit commitment problem. This paper 
describes a genetic algorithm approach which solves the unit commitment problem for two interconnected 
regions of the National Electricity Market.  This ‘biological’ algorithm is an alternative to classical 
optimisation methods and is applied to optimise the scheduling of units, including the economic dispatch, in 
Queensland and New South Wales. A comparison between the results of this model and a sequential model 
applied to the same problem is presented. 
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1. INTRODUCTION 

The aim of this paper is to determine if a model 
based on genetic algorithms can find an optimal 
or near optimal solution for a large multi-area unit 
commitment problem (two regions) in a 
deregulated energy market. 

The objective of the multi–area unit commitment 
problem is to find an optimal scheduling of units, 
including the allocation of the generation 
quantities of each unit, in order to minimize the 
total cost of dispatched electricity for all regions, 
during a time horizon, subject to a set of 
constraints. 

Radcliffe (1992) and Michaelewic (1994) 
revealed statements concerning the suitability of 
genetic algorithms to solve a large range of 
unconstrained or constrained problems. 

Smith (1994) shown that “from the multitude of 
examples of genetic algorithms applied to 
different optimisation problems, there is a small 
number of examples published of where they are 
successfully applied to practical applications”. 

Genetic algorithms replace totally classical 
optimisation techniques and it is considered that 
this intelligent technique can solve suitable 
difficult problems in the new power electricity 
environment. 

The power of a genetic algorithm arises from the 
concept of ‘implicit parallelism’ (Holland 1975, 
Goldberg 1989). Holland (1975) defined a 
schema as a similarity template describing a 
subset of structures with similarities of certain 
gene positions. During the search, the similarities 

between structures conduct the algorithm to better 
and better solutions. 

A candidate solution is a chromosome whose 
length is the product of the number of units and 
the number of trading periods. In conformity with 
the biological terminology, a solution is called 
chromosome and contains a sequence of genes. 
All the chromosomes create a population. 

The fundamental optimisation process 
encompasses a combination of chromosomes 
which produces better and better chromosomes 
(solutions) with almost each generation during the 
search algorithm. 

In this paper, the unit commitment problem is 
solved in a deregulated environment and the units, 
scheduled based on the bid price, can dispatch 
any quantity of electricity starting with the 
minimum quantity up to their full capacity instead 
to be simple on (at full capacity) or off. 

2. GENETIC ALGORITHMS METHOD 

A genetic algorithm is a stochastic search 
technique based on natural inheritance and the 
Darwinian ‘survival of the fittest’ law (Goldberg 
1989). Since the nature is in a permanent process 
of adaptation, genetic algorithms appear to be 
suitable to solve optimisation applications in real 
life. 

On brief, a genetic algorithm starts with a 
‘randomly’ generated initial population of 
feasible solutions. Each solution is evaluated and 
selected according to its fitness. Genetic operators 
are applied to the population and, in most of the 
cases, a new generation of better solutions is 
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obtained. The algorithm is performed until an 
optimal or near optimal solution is obtained. 

In order to solve a problem using this method, a 
series of components must be defined: 

 A coding for parameters; 

 A way to create an initial population of 
feasible solutions; 

 A fitness function; 

 A set with the probabilities of genetic 
operators and population size. 

The values of the parameters used by a genetic 
algorithm are not universally suitable for any 
problem. These values are different, being 
problem dependent and there is a complex task to 
find them. Thus, for any type of problem, a series 
of experiments are recommended in order to find 
the most appropriate parameter values. 

3. TWO REGIONS GENETIC UNIT 
COMMITMENT MODEL (GA_2_51) 

3.1. Introduction 

The model uses both decimal and binary 
representation.  Each generator is represented by 
two strings of nine genes. The initial population is 
generated by randomly creating 2 decimal 
numbers between 0 and 511 for each generator.  
Each of these numbers can be represented binary 
by a string of nine genes. 

After the first generation is randomly created, the 
total cost, quantity and fitness are evaluated. The 
quantity allocated to each generator is: 

Qi = Minimum generation + ∆i (Xi + 1),  

where Xi is the value of the random numbers 
transformed in a decimal number and ∆i is the 
interval width. 

The price corresponding to the allocated quantity 
is calculated taken into consideration each of the 
band of the scheduled offers. 

The objective is to schedule the units in such a 
way that the total demand is attained and the 
interconnector limits are met and the total sum 
paid to the generators is minimal.  For each 
member of the population, the deviation from the 
load is Φi, that is the difference between the total 
generation of the units and total demand for the 
two regions. 

For the total cost function (TCF), it is necessary 
to impose penalties for not meeting the demand 
and for exceeding each interconnector limit. The 
penalty for exceeding the limit of the 
interconnector from region 1 to 2 is denoted by 

Int12_Penalty and for the reverse direction 
Int21_Penalty. 

The penalty for exceeding the limit of 
interconnector from region k to region j 
Intkj_Penalty, k = 1 and j = 2 or k = 2 and j = 1, 
applies only when the generation of region k 
exceeds the sum of the demand for region k and 
interconnector limit from region k to region j. In 
this case the penalty is applied to the exceeding 
amount.  Therefore, the total cost function (TCF) 
is calculated as follows: 

TCF = Total gen. cost + D Penalty * |Φi| + 
Int12_Penalty * Max (0, Total gen. region 1 – 
D region 1 - Interconnector limit12+ 
Int21_Penalty * Max (0, Total gen. region 2 - 
D region 2 - Interconnector limit21) 

The fitness function was defined as: 

Fitness = 1/TCF*1,000,000. 

After the fitness is evaluated for each member of 
the initial population, the population is sorted 
descending function of the individual fitness. 

Roulette wheel was employed as a mean of 
selection. Each member has assigned an equal 
sector between 0 and 1, such that the sum of all 
the sectors is 1. 

Each string is assigned a random number between 
0 and 1 and function of its sector and this number, 
the string is selected for participating in the 
crossover. The crossover and mutation rates are 
set at the beginning of the modelling. 

The new population is translated back into 
decimal notation and the process of calculating all 
the statistics starts again. 

The model was developed in exclusivity on the 
genetic algorithm method. It was applied on a 
deregulated two–region interconnected power 
system in the Australian national market. 
Queensland (region 1) contains 27 units and NSW 
(region 2) has 24 units. 

The demand for period 1 of 1 July 1999 was 2980 
MW for Queensland and 6770 MW for NSW. 
Each unit has 10 price bid offers and 10 quantity 
bids (for each half-hourly period). The 
interconnector limits are as follows: 

 From Region 1 to 2 is 800 MW; 

 From Region 2 to 1 is 600 MW. 

The code is written in Visual Basic for 
Applications with an Excel interface. The 
algorithm stops when the number of iterations set 
has been reached. The genetic flow chart is shown 
in . Table 1



Table 1 Flow chart of the genetic algorithm model GA_2_51 

 

Where: 
START      i = iteration 

     N = total number of iterations 

i = 1

Yes NoKeep an initial 
population 

CREATE 1st 
POPULATION Randomly select the 

chromosomes for 1st 
population 

EVALUATE 
POPULATION (i) 

Yes No
i < N 

i = i + 1 CREATE and 
EVALUATE further M 
iterations 

KEEP the best x% 
chromosomes from the 
previous population OUTPUT the 

SOLUTION (UC 
schedule) CREATE THE 

NEXT 
POPULATION Use crossover for 

reproduction 

STOP 

Use mutation

 Penalty for exceeding the interconnector 
limit = $100/MWh 

GA_2_51 uses as an initial feasible solution the 
chromosome which has all the values equal to 
zero, in order to have selected only the minimum 
generation given by the baseload units. GA_2_51 
was run 5 times and parameters for each trial 
were: 

 Elitism – keep the best chromosome. 

A sequential model (SQM_2_51) is applied to the 
same unit commitment problem and the results 
between the two models are compared. The 
sequential model is exclusively developed using 
the sequential method. Based on bid price, this 
model employs a bidding procedure to 
sequentially identify the next most economic unit 
to be committed. 

 Mutation percent = 10% 

 Crossover percent = 95% 

 Number of iterations = 150 

 Penalty for not meeting demand = 
$100/MWh Both models were run for one period and all the 

units are not operational. 



3.2. Results and analysis 

The SQM_2_51 find the solution in 0.12 seconds: 

 Total cost of electricity dispatched is 
$25,382.35; 

 Pool price for Queensland is 
$3.80/MWh and $7.67/MWh in NSW; 

 Queensland generated 3135 MW and 
exported 155 MW to NSW; 

 NSW generated the remaining 6615 
MW. 

The computational time for GA model was 2.5 
hours per trial. The average total cost solution of 
the 5 trials was $27,962 and the minimum 
attained in Trial 1 was $26,794 compared with 

SQM_2_51 solution of $25,382 (at minimum a 
variation of 6.27%). 

The average total cost solution of the 5 trials was 
$27,962 and the minimum attained in Trial 1 was 
$26,794 compared with SQM_2_51 solution of 
$25,382 (at minimum a variation of 6.27%).  

Trial 1 has the pool price for Queensland of 
$3.80/MWh (same as SQM_2_51) and 
$9.82/MWh for NSW. The interconnector transfer 
between 44 MW to 442 MW. The statistic results 
are presented in , total cost of dispatch in 

, dispatch schedules are shown in 
 and best fitness in . 

Table 2

Table 2 Statistics results for GA_2_51 and SQM_2_51 

Figure 1

Figure 1 Total cost of dispatched generation ($/MWh) 

Table 
3 Figure 2

 

Trial 
Number

Total Cost 
($)

NSW Pool 
Price 

($/MWh)

Qld Pool 
Price 

($/MWh)

NSW 
Generation 

(MW)

Qld 
Generation 

(MW)

Interconnector 
transfer (MW)

1 $26,974 $9.82 $3.80 6726 3024 44
2 $29,180 $13.57 $13.79 6509 3241 261
3 $28,291 $5.73 $13.79 6328 3422 442
4 $27,103 $9.82 $11.02 6560 3190 210
5 $28,261 $10.83 $3.80 6717 3033 53

SQM_2 $25,382 $7.67 $3.80 6615 3135 155  
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Table 3 Dispatch results for GA_2_51 and SQM_2_51 

Unit name 
(Q ld) SQ M_2 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Unit 
name 

(NSW)
SQ M_2 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

CALL_A_1 15 15 15 15 15 15 BW01    400 400 444 447 418 400

CALL_A_2 15 15 15 15 15 15 BW02    550 551 550 550 550 550

CALL_A_3 15 15 15 15 15 15 BW03    400 400 511 450 412 438

CALL_A_4 15 15 15 15 15 15 BW04    400 400 406 415 431 405

CALL_B_1 165 167 165 169 174 170 ER01    400 221 227 318 489 221

CALL_B_2 165 165 167 266 228 193 ER02    230 381 374 236 351 436

GSTO NE1 195 196 195 195 195 195 ER03    260 304 492 292 330 305

GSTO NE2 195 195 195 195 195 195 ER04    230 342 260 241 238 452

GSTO NE3 195 195 195 195 195 195 LD01    0 0 0 0 0 0

GSTO NE4 180 180 180 180 180 180 LD02    400 413 403 414 403 417

GSTO NE5 110 110 110 110 112 110 LD03    400 419 402 406 401 401

GSTO NE6 195 195 195 201 195 195 LD04    400 417 412 402 412 409

STAN-1  190 146 145 159 174 145 MM3     120 179 135 152 144 190

STAN-2  190 160 159 175 149 145 MM4     120 187 198 135 155 133

STAN-3  145 145 145 145 145 145 MP1     630 433 292 412 286 440

STAN-4  190 145 206 169 145 145 MP2     630 580 319 365 429 341

SWAN_B_1 50 50 50 50 50 50 NGTS    0 0 0 0 0 0

SWAN_B_2 50 50 50 50 50 50 SHGEN   0 0 0 0 0 0

SWAN_B_3 50 55 50 50 50 50 SHPUMP  0 0 0 0 0 0

SWAN_B_4 50 50 50 50 50 50 SITHE01 80 80 80 80 80 80

TARO NG#1 190 190 207 210 217 190 VP5     300 300 300 300 300 300

TARO NG#2 190 190 215 261 200 190 VP6     300 300 300 300 300 300

TARO NG#3 190 190 198 224 190 190 WW7     200 213 203 210 230 249

TARO NG#4 210 190 304 308 236 190 WW8     200 206 201 203 201 250

W/HO E#1 0 0 0 0 0 0

W/HO E#2 0 0 0 0 0 0

YABULU  0 0 0 0 0 0  
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Figure 2 Best fitness 



4. CONCLUSION 

Recently, noticeable progress has been made 
towards the application of genetic algorithms in 
solving some problems of the power energy 
industry. 

This ‘biological’ algorithm approach, as an 
alternative to classical optimisation methods, 
solves the unit commitment problem for two 
interconnected regions of the national market, 
based on bid price.  

Thus, the model is applied on a large scale power 
system with 51 generation units which are 
competing in a deregulated environment and 
provides good schedules of units including the 
economic dispatch. The units can dispatch any 
quantity of electricity starting with the minimum 
quantity up to their full capacity. 

The genetic algorithm model found in all cases 
near optimal solutions and the application of this 
technique to power energy industry is promising 
very good results in the future. 

Based on the theoretical foundations of genetic 
algorithms and taken into consideration the 
computer equipment used in this modelling, the 
computational time, as expected, is very high. 
This limiting factor can be addressed using 
powerful workstations with large memory and 
many microprocessors, currently available at 
reasonable price. 

In comparison with the genetic approach, 
sequential model proved to be very efficient, 
given the ’optimal’ solution in real time (0.12 
seconds). 
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