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Abstract: Rainfall-runoff modeling is an integral part of a hydrologic model such as the Integrated Quantity 
and Quality Model (IQQM) being developed for the Lombok catchment in Indonesia. The main objective is 
to develop a tool for efficient water distribution and management. One of the problems encountered for 
runoff generation was a shortage of daily data for the purposes of model calibration and validation. Given 
this limitation, a comparative analysis is being undertaken to select the most appropriate rainfall-runoff 
model for the Lombok catchment.  The paper examines rainfall-runoff generation processes using traditional 
soil moisture accounting models such as the Sacramento model as well as an artificial neural network back-
propagation model (NNM). Simulated streamflows resulted in higher level of fitness in the case of the NNM.   
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1.   INTRODUCTION 

A research project was undertaken by the 
Queensland Centre for Climate Applications, 
Toowoomba, to assess the impact of climate 
variability in water and crop management in 
Lombok, Indonesia. The Australian Centre for 
International Agricultural Research funded the 
project entitled “Capturing the Benefits of 
Seasonal Climate Forecasts in Agricultural 
Management”. One objective of this project was 
to develop decision support systems to make 
informed decisions on water allocation, cropping 
systems, and irrigation strategies based on 
seasonal climate forecasts (Abawi et. al, 2002). 

To fulfil the objectives, a generalized river basin 
hydrologic model named Integrated Quantity and 
Quality Model (IQQM) is being developed for the 
study area to be used as a decision support tool in 
the next stage of the project scheduled to start in 
July 2003. Rainfall-runoff modelling is an 
integral part of the development of the IQQM 
model. This paper compares rainfall runoff 
modeling in one river of Lombok island using 
Sacramento and Back-propagation Neural 
Network models.   

2.   DESCRIPTION OF THE STUDY 
AREA 

Lombok island lies in the eastern part of the 
Indonesian Archipelago and covers an area of 
approximately 4,800 square kilometers. The 
catchment area of Sesaot river (Figure 1) at the 
Keling streamflow gauging station is 35 sq km. 

The land cover in the catchment is mainly tropical 
forest. The geological features comprise of 
tertiary volcanic rocks and sedimentary deposits 
(Beture Setame, 1992). The river is fed by 
numerous springs emerging from volcanic ash 
deposits and therefore, groundwater contribution 
to the streamflow is significant. 

Catchment 
boundary 

 
Figure 1.  Location Map of Sesaot River 

3.   OBJECTIVE AND SCOPE OF THE 
STUDY 

The major difficulty in the development of the 
IQQM model for Lombok has been a lack of the 
streamflow data needed for model calibration and 
validation. Therefore, it has been decided to use a 
rainfall-runoff model to generate streamflow data.  

Rainfall-runoff models can be classified into two 
groups – black box models and process models. 
NNM is a black box model that relates input and 
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output through complex mapping functions while 
the Sacramento model relates rainfall-runoff 
relationships through conceptualization of the 
hydrological processes in the catchment.  A 
comparison of black box and process models is 
given by Chiew et. al. (1993), however, this does 
not include neural network models.   

Hsu et al. (1993) found that an artificial neural 
network model matched the hydrograph most 
closely for a medium size river in Collins, 
Mississipi, USA, while the recession and low 
flow performance was better than that of the 
Sacramento model. Sajikumar and 
Thandaveswara (1999) found that an artificial 
neural network (ANN) was the most efficient of 
the black-box models tested for calibration 
periods as short as 6 years. These results 
prompted the researcher to conduct a comparison 
test of both the Sacramento and neural network 
models for the Sesaot river. It is expected that the 
research would contribute in the selection and the 
application of an appropriate model, as no 
comparison of rainfall-runoff models for this river 
has been carried out before.   

Usually 20-30 years of daily streamflow and 
rainfall data is desirable for calibration and 
validation of rainfall-runoff models to cover 
different climate cycles. However, for the Sesaot 
river, only 8 years of daily rainfall and 
streamflow data were available. This limitation 
applies to both the modeling approaches.  In this 
study, both models were run using the same data 
and period of analysis. The criteria used for 
comparison are correlation coefficient, coefficient 
of efficiency and volume ratio. Although 
qualitative in nature, there is no substitute for 
visual inspection of observed and simulated 
hydrographs, therefore these graphs are also 
included. 

4.   SACRAMENTO MODEL 

The Sacramento model is a spatially lumped 
continuous soil moisture accounting model 
developed by the United States National Weather 
Service and the California Department of Water 
Resources (Burnash, 1973). The schematic 
diagram of the model is shown in Figure 2. 

Although the soil mantle can be divided 
theoretically into infinite zones, in practice, it 
consists of mainly two zones: the upper zone and 
lower zone as shown in Figure 2.  The upper zone 
represents short-term storage capacity and 
contributes primarily to surface run-off and 
interflow. The lower zone characterizes long-term 
storage capacity and contributes supplemental and 
primary groundwater flow.The input data for the 
Sacramento model consists of catchment area, 
spatially averaged precipitation, evaporation, pan 
coefficient and observed flows for calibration and 
validation of the model. In addition, it requires 
initial values of the soil water storage contents 
and ordinates of the unit hydrograph for surface 
flow. The soil-water characteristics and 
conceptual linkages among themselves are 
defined by a set of parameters estimated during 
calibration. One of the important criteria for 
parameter estimation is the sufficiency of system 
excitation given the input during the validation 
period (Wood and O’Connell, 1985).   

 5. BACK PROPAGATION NEURAL 
NETWORK MODEL 

A standard back propagation neural network 
model (NNM) is a multi-layer perceptron trained 
through the back propagation of errors algorithm 
developed by Werbos  (1974), and Rumelhart et. 
al. (1986). A multi-layer perceptron is a feed 

Figure 2. Conceptulisation of Sacramento Model  



forward net with one or more hidden layers of 
nodes or neurons between input and output layers. 
The perceptron is a neural network model with 
learning and adaptation features developed by 
Rosenblatt (1958).  

where  y is the effective input signal, θ   is a bias 
term similar to a threshold and k is the gain of the 
sigmoid whose value may vary from -∞ to +∞.  In 
this study, k has been fixed to 1. Under the back 
propagation algorithm, the weights are adjusted 
recursively working from the output nodes 
towards the first hidden layer using equation (4) 
below : 

A feedforward multi-layer neural network model 
is shown in Figure 3. The circles in the diagram 
represent neurons and x1, x2,….. and xn  are the 
inputs applied to them. An arrow connects the 
neurons in two adjacent layers and holds the 
synaptic weight reflecting the strength of the 
linkage. These weights are adjusted by a feedback 
mechanism during the learning process. 
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where wij
t+1 and wij

t are the synaptic weights at 
time step  t+1 and t, respectively, α is the 
momentum factor, η is the learning rate,  δj is the 
error signal term and Oi is the output of neuron i 
or an input. The error signal δj for an output node 
j is given by 

At each neuron i, the incoming signals are 
multiplied by the synaptic weights and added 
together to get an effective input signal as given 
by  (1). 
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                 (1) where  Tj is the target output of node j  and Oj is 
the actual output. For an internal hidden node, the 
error signal is where Yi is the effective signal at neuron i, wij is 

the synaptic weight associated with the arrow 
linking neuron i and neuron j, Xj is the incoming 
signal and n is the total number of signals. 
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where O'j is either output of node j or an input. Then, a threshold function is applied to compute 
the activation of the neuron or output. The output 
or activated value Oi at neuron i is given by 

The network architecture of the NNM model used 
in this study consists of three layers of feed 
forward net – input, output and a hidden layer. 
The determination of the correct number of 
hidden layers and the number of neurons in an 
ANN needed to solve a specific task is still an 
open problem (Birikundavyi et al., 2002). 
However, a single hidden layer network can 
approximate any continuous and bounded multi-
variate function provided that sufficient numbers 
of neurons exist (Cybenko, 1989). Further, De 
Villars and Barnard (1993) found that a two 
hidden layer network converges with less 
accuracy than its single hidden layer counterpart. 
Therefore, a one hidden layer network was chosen 
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Hard limiter, ramp and sigmoid are typical 
activation functions used in neural network 
modeling. In this study, a sigmoid logistic 
function has been used since it is monotonic, 
bounded and has the useful property that the 
derivative of this function is a function of itself. 
The sigmoid logistic activation function is  
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Figure 3.     A feedforward -layer neural network   



in this study.  

A trial and error experiment was conducted with 
5, 10, 15, 30, 40, 50 and 90 neurons and it was 
found that 40 neurons in the hidden layer with 90 
neurons in the input layer and one neuron in the 
output layer provided the best performance for 
this study. The computer execution time increased 
from 32 seconds to 596 seconds, when the 
neurons were increased from 40 to 90 with very 
little improvement on the accuracy.               

6.    METHODOLOGY 

Three modeling scenarios were tested with the 
NNM. In the first scenario NNM-1, the input data 
to nodes were streamflow data for the previous 30 
days and evaporation and rainfall data from the 
present day to the last 29 days. The second 
scenario NNM-2 involved only evaporation and 
rainfall data, while in the last scenario NNM-3 
only rainfall data were used for the same 
corresponding period of NNM-1.      

The recorded streamflows of Sesaot river were 
divided into three periods: (1) Training period (2)  
Testing period and (3) Validation period for the 
NNM modeling. The training data were used to 
find the optimal set of connection weights and the 
testing data were used to avoid over-fitting and to 
find the effects of other parameters such as 
learning rate, momentum factor and number of 
neurons in hidden layers. Over-fitting occurs 
when the network performs well on the training 
data but poorly on the test data (Bowden et. al., 
2002). To avoid over-fitting, the training of the 
net was stopped when the improvement in the 
coefficient of efficiency was less than 0.0001 for 
NNM-1 and 0.001 for NNM-2 and NNM-3.  

Maier and Dandy (2000) stated that the data sets 
for validation period must be kept separate from 
the model development process. Accordingly, 
these data sets were used only to test the 
generalization capability of the model and to 
compare the results with the Sacramento model.  

As the available records were very short, the 
training period was limited to the first year. The 
other two periods were selected such that the 
mean and standard deviation of the samples do 
not change significantly from one period to 
another. The statistics of the observed data in 
these periods are shown in Table 1. 

The observed data were transformed such that 
their values lie between 0.9 and 0.1 in order to 
avoid flat regions of the sigmoid function. 
Random values lying in the range of –0.5 to +0.5 
were assigned to the initial weights to overcome 
the symmetry problem. Usually, the learning rate 
is selected between 0.05-0.25 to ensure that the 

network will find an optimum solution (Burian et. 
al., 2001, Kutza, 1996). In this study, a learning 
rate of 0.2 was used for all three scenarios and a 
momentum factor of 0.6 for NNM-1 and 0.9 for 
NNM-2 and NNM-3 produced optimum results 
after experimenting with various combinations of 
these values.    

The Sacramento model was run using the 
procedure defined in the IQQM User Manual 
(DLWC 1999). Hsu et al. (1993) used six months 
of buffer period in their Sacramento model to 
minimize the effects of errors in the initial state 
variables on calibration results. In this study, the 
first year was used as the buffer period. The 
observed and simulated hydrograph were matched 
visually paying special attention to the end of this 
period. The outputs for soil storage contents at the 
end of the buffer period were input as initial 
storage contents for the next calibration period of 
two years. In this stage the Sacramento model 
parameters were optimized based on the 
coefficient of efficiency with a target value of 
unity. The model was then run with the calibrated 
parameters for the validation period. 

7.   RESULTS 

The observed and simulated hydrographs from the 
Sacramento model for the validation period are 
shown in Figure 4 and the statistics of the 
observed and simulated values are shown in Table 
2. 

While it is common practice to get a correlation 
coefficient of 0.80 or more in rainfall-runoff 
modeling for broader acceptance, it was not 
possible to achieve this for the Sacramento model. 
There may be numerous reasons including 
unmeasured abstraction of the flows, uneven 
distribution of rainfall in the catchment and 
quality of recorded data. The statistics for the 
three NNM scenarios are shown in Table 2. The 
observed and NNM simulated hydrographs for the 
validation period are plotted in Figure 5. 

Table 1. Mean, Standard deviation and Skewness 
of Observed Flows, Sesaot River.  

 Statistic Training 
Period 

Jan 92-
Dec 92 

Testing 
Period 

Jan 93-
Dec 94 

Validation 
Period 

Jan 95-
Dec96 

Mean 
Flow 
ML/day 

232 289 248 

Standard 
deviation 

153 220 163 

Skewness 0.86 1.04 1.04 



Table 2. Statistics of the Observed and Simulated Flows during Validation Period 
Simulated Flows ML/day Statistic Observed 

Flows 
ML/day 

Sacramento NNM
-1 

NNM
-2 

NNM
-3 

Mean 248 251 24 26 23
Standard deviation 163 165 163 148 85 
Skewness 1.04 0.20 1.0 0.33 0.25
Volume ratio  (simulated/observed)  1.017 0.999 1.050 0.962 
Correlation coefficient (simulated vs. observed)  0.748 0.963 0.794 0.755 
Coefficient of efficiency  0.491 0.926 0.612 0.512 
 

04   

8 0 8 

 NNM-1 gives the best result, but it uses previous 
day observed flow as an input and so this method 
is only useful for real time flow forecasting. With 
the second scenario of NNM similar input data to 
the Sacramento model has been used. The 
correlation coefficient and coefficient of 
efficiency for NNM-2 are found to be higher than 
for the Sacramento model.  

8.    CONCLUSIONS AND 
RECOMMENDATIONS 

There is no substitute for sufficient high quality 
data in rainfall runoff modeling, however, a 
rigorous analysis with both conceptual and black 
box modeling techniques such as NNM provides 
more confidence in the outcomes of the modeling. 

However, for NNM-3 with only rainfall data as 
input, the correlation coefficient and coefficient 
of efficiency deteriorate to the same level as for 
the Sacramento model. This result shows that 
evaporation plays an important role in 
synthesizing streamflow data with NNM.  
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Figure 5.  Observed and NNM simulated flows 
during validation period. 

There was a 25% improvement in the coefficient 
of efficiency and 6% in the correlation coefficient 
with NNM-2 given similar input data than the 
Sacramento model. However, the volume ratio 
and skewness coefficient were closer to the 
observed flows for the Sacramento model than the 
NNM.  

Figure 4.  Observed and Sacramento simulated 
flows during validation period. 

Given the linkages between temperature and 
evaporation, it is interesting to note that 
temperature did not play a significant role in a 
study carried out by Cannas et al., (2001). As 
NNM is a black box model, it is recommended to 
perform significance tests on the improvement in 
the accuracy of flow prediction if other climate 
variables such as temperature and relative 
humidity are used in the NNM model. 

The Sacramento model component of IQQM does 
not have a feature to provide previous day 
observed flow as input for real time flow 
forecasting and NNM has this capability. It 
showed excellent results in this study and 
therefore, it is recommended to explore this area 
further.   

NNM-1 produced excellent results with a 
correlation coefficient and coefficient of 
efficiency of 0.963 and 0.926, respectively. The 
simulated and observed peaks of hydrographs for 
this scenario also match very well (Figure 4).  
Consequently, there seems significant scope for 
using NNM for real time flow forecasting and 
further research will enhance the acceptability of 
NNM concepts.      
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