
Generic Artificial Neural Network Framework for 
Habitat Assessment and Prediction of                

Australian Stream Systems 
N. Horrigan* and F. A. Recknagel                                                                                       

School of Earth and Environmental Sciences, University of Adelaide, SA 5000, Australia 

*corresponding author: nelli.horrigan@adelaide.edu.au 

Abstract: The Stream Decision Support System (SDSS) is taking advantage of both supervised and non-
supervised artificial neural networks (ANNs) for stream assessment and prediction by an integrated approach. 
Non supervised ANNs were applied for patterning the natural variability in stream macroinvertebrate 
communities in Queensland. Supervised ANNs were developed for the prediction of the occurrence of stream 
macroinvertebrates in Victoria based on “clean-water” approach. Supervised ANNs were also applied for the 
prediction of taxonomic richness of native macrophytes and macroinvertebrates in the stream system of NSW 
by means of multi-layer perceptron ANN. The future development of the SDSS and its applicability for 
environmental management is discussed.    
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1. INTRODUCTION 

In the last decade supervised as well as non-
supervised artificial neural networks (ANN) have 
been applied successfully to elucidate non-linear 
relationships between environmental variables 
(Chon et al., 1996; Lek et al., 1996; Huong and 
Recknagel, 2003) and predict habitat conditions 
in stream ecosystems (Walley and Fontama, 
1998; Schleiter et al., 1999; Huong et al., 2001). 
These results have demonstrated that ANN 
models can improve understanding and prediction 
of processes in freshwater ecology.  

The present paper outlines the structure and 
functioning of the stream decision support system 
SDSS that integrates ordination and clustering of 
complex stream data using non-supervised ANN 
and prediction of stream habitat conditions by 
supervised ANN using both “clean-water” 
(“reference”) and “dirty-water” approaches. 
SDSS is designed to be generic for Australian 
stream systems. In the context of this paper 
example applications of the prototype SDSS to 
the stream databases of Queensland, NSW and 
Victoria are discussed.      

2. DATA 

The main database for the development of the 
SDSS was provided by the Queensland 
Department of Natural Resources and Mines. It 
contains presence and absence data of 168 
macroinvertebrate families sampled from 1994 to 

2002 at 859 sites, and a number of physical and 
chemical variables selectively used for different 
parts of the SDSS. In order to test the generic 
applicability of the framework we used two 
additional databases provided by the Victorian 
Environmental Protection Authority and the NSW 
Department of Land and Water Conservation. The 
database from Victoria contained occurrence data 
of 128 macroinvertebrate families sampled at 407 
stream sites from 1990 to 1998. The database 
from NSW was the result of a Multi-Attribute 
River Assessment (MARA) survey of 122 sites on 
unregulated streams in 12 sub-catchments within 
four catchments. All three databases contained 
slightly different sets of variables which were 
divided into three subsets: 

1. Physical settings and diversity (geographical 
position, altitude, slope, distance from 
source, rainfall, substrate heterogeneity, etc.) 

2. Biological variables (macrophyte category, 
number of macrophyte taxa, presence and 
absence of macroinvertebrate taxa, 
abundance of macroinvertebrate taxa, number 
of diatom families, number of native fish 
species, etc.)  

3. Risk factors (flow, water temperature, 
phosphorus, nitrogen, oxygen, organic 
matter, etc.) 

 
 

  



3. METHODS 

Stream Decision Support System SDSS 
Figure 1 illustrates the principal structure and the 
corresponding functionality of the SDSS. The 
interactive user interface supports both: (1) the 
access to stream databases and supervised and 
unsupervised ANN models, and (2) the 
visualization of modeling results. The stream 
databases are structured into physical, biological 
and risk variables. The unsupervised ANN 
models process the stream data for spatial 
ordination, clustering and diagnosis of stream 
sites. The supervised ANN models allow the 
prediction of the occurrence and abundance of 
aquatic macroinvertebrates depending on stream 
habitat and water quality conditions. In addition 
they can be used for elucidating relationships 
between physical and biological variables by 
means of sensitivity analysis and conducting 
scenario analysis on potential impacts or 
restoration measures. Application of the 
sensitivity analysis for elucidation of hypothetical 
relationships between habitat conditions and 
macroinvertebrate assemblages in Queensland 
streams has been described by Hoang et al. 
(2003). Scenario analysis features are still under 
development and are not addressed in this paper.            

Unsupervised ANN Models         
Kohonen (1982) invented unsupervised ANNs 
(also known as Self-Organising Maps (SOM)) 
that enable patterns in data to be discovered 
without learning, cluster the data into a predefined 
number of classes, and order the classes in a two-
dimensional output space such that near 
neighbours in the data space are near neighbours 
in the output space. They have proven to be a 
very useful tool for ordination and clustering of 
ecological data (Chon et al. 1996).   

The ordination and clustering of stream data by 

SDSS is independent from the predictive 
modelling by supervised artificial neural networks 
and improves the understanding of spatial and 
temporal patterns of various variables. However, 
provided that the number of spatial classes is 
properly labelled corresponding with ecological 
properties of particular stream habitats, SOMs can 
be used as diagnostic tools for the assessment and 
continuous monitoring of freshwater habitats. 
Even though SOM models have been developed 
for both reference and testing sites of the stream 
systems of Queensland, Victoria and NSW, only 
results on the natural variability between 
reference sites in Queensland are documented in 
the context of this paper. The Queensland data 
were sampled from 111 sites of a riffle habitat in 
spring. The SOM for Queensland streams was 
generated by an unsupervised artificial neural 
network supported by Matlab 5.3 and the 
freeware SOM toolbox from The Laboratory of 
Computer and Information Science (CIS) at the 
Helsinki University of Technology. The input 
layer of the neural network contained 16 physical 
habitat variables, and presence-absence data of 
158 macroinvertebrate families. The resulting 
SOM consisted of 90 cells and was partitioned 
into 4 clusters using the k-means algorithm. The 4 
clusters were finally visualised in the Queensland 
map by means of ArcView 3.2.  

Supervised ANN Models 
Supervised artificial neural networks based on the 
backpropagation algorithm (Rumelhardt et al., 
1986) are preferred tools for predictive modeling 
in ecology. They are typically characterized by 
input, hidden and output layers where the hidden 
layers contain internal connection weights 
between input and outputs which are steadily 
modified during training in order to minimize the 
error between predicted and observed outputs.  
Supervised artificial neural networks are not 
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Figure 1. Structure and functioning of the stream decision support system SDSS 



4. RESULTS limited in complexity and are particularly well 
suited for multiple nonlinear cross-sectional (Lek 
et al., 1996) and time-series data (Recknagel et 
al., 1997).  

4.1. Classification 

In order to understand patterns of natural 
variability in Queensland streams we developed a 
SOM for a riffle habitat based on 16 
environmental variables and 158 
macroinvertebrate taxa. As a result we identified 
4 distinctive clusters and 1 transitional cluster. 
These clusters are shown in Figure 2. The two 
partially overlapping clusters 2 and 4 cover South 
Eastern areas; cluster 1 is concentrated  at the wet 
tropics area and large inland areas belong to 
cluster 3. Several samples overlap between 
clusters 1 and 4 which seems to indicate that the 
area of Central Queensland Coast should be 
considered as a separate spatial cluster. 

Supervised artificial neural networks were 
successfully applied to develop predictive models 
for specific macroinvertebrate taxa in the 
Queensland stream system (Hoang et al., 2001) 
where cross-sectional data based on both the 
reference and the “dirty-water” approach were 
utilised. In the context of this paper we 
demonstrate  the predictive ability of ANN using 
both “reference” and “dirty-water” approaches. 
We developed predictive models for the 
occurrence of stream macroinvertebrates in 
Victoria (“reference” approach), as well as for a 
number of native macrophyte species and 
macroinvertebrate families in the stream system 
of NSW (“dirty-water” approach) by means of 
multi-layer perceptron neural networks with 
sigmoid transfer function. 

21 variables for physical and biological habitat 
properties were used as inputs and binary data for 
the occurrence of 15 macroinvertebrate taxa were 
used as an output for the Victoria stream model. 
The 15 output taxa were randomly chosen in 
order to validate the models’ accuracy for 
common and rare taxa, where 5 were considered 
to be very common (at more than 70% of sites), 5 
to be common (at about 50% of sites) and 5 to be 
uncommon (at less than 30% of all sites). The 
accuracy of the ANN predictions was estimated 
as the percentage of correct predictions. The 
models have been developed using the Neuro 
Solutions 4 software. The Cross-validation 
technique has been used to determine the 
optimum architecture of the ANN and prevent 
overtraining.  For the NSW data we used a 
combined set of 20 physical, chemical and 
biological predictor variables. The number of 
invertebrate families and native macrophyte 
species were used as outputs variables. The 
models were developed using Matlab 5.3 
software. Because of the small size of the 
database we could not spare a subset for cross-
validation purposes. Instead, models were trained 
using Bayesian regularisation (Foresee and 
Hagan, 1997). The accuracy of the ANN 
predictions was estimated as the correlation 
between actual and predicted output.   
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For both Victorian and NSW data, 30% of each 
dataset were chosen at random for the purpose of 
model validation.  This data has not been used for 
training of the models, to avoid any possible 
confounding of the results by overtraining. Only 
the results for validation sets are demonstrated 
below.  
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surroundings, which supports the idea that it 
should be considered as a separate cluster. The 
pattern of seasonal rainfall (Figure 3(c)) explains 
well the difference between southern and northern 
parts of Queensland with clusters 1 and 3 having 
higher rainfall in the wet season in comparison 
with clusters 2 and 4 where the difference 
between seasons is not very significant. 

4.2. Prediction 

Results of the modelling data from Victoria are 
shown in Table 1. 

Table 1. Percent of correct predictions of 
occurrence of macroinvertebrates in streams of 
Victoria (validation set). 

 Taxa % correct 
predictions 

Very common Oligochaeta 68.44 

 Acarina 83.11 

 Dytiscidae scidae 74.22 74.22 

  Elmidae Elmidae 79.56 79.56 

  Tipulidae Tipulidae 72.88 72.88 

Common Common Psephenidae Psephenidae 75.56 75.56 

  Scirtidae sp Scirtidae sp 69.33 69.33 

  Ceratopogonidae Ceratopogonidae 67.55 67.55 

  Coloburiscidae Coloburiscidae 84.44 84.44 

  Physidae Physidae 82.67 82.67 

Uncommon Uncommon Gordiidae Gordiidae 87.56 87.56 

  Dugesiidae Dugesiidae 78.22 78.22 

  Ancylidae Ancylidae 74.22 74.22 

  Ceinidae Ceinidae 92.00 92.00 

  Gyrinidae Gyrinidae 76.00 76.00 

 

 

The average percent of correct predictions for all 
15 taxa was 77.71%, for very common and 
common taxa 75.64 and 75.91 respectively, and 
slightly higher (81.6%) for uncommon taxa. 

For the NSW data correlation between predicted 
and actual output on the validation set was 0.7 for 
the Number of Macroinvertebrate Families and 
0.79 for the Number of Native Macrophyte 
Species (Figure 4). 
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Figure 4. Predicted output  versus actual output  
for the validation set (30% of the database not 
used for training) for a) number of native 
macrophytes species b) number of families of 
stream macroinvertebrates from NSW.  

5. DISCUSSION AND CONCLUSION 

The aim of this study was to demonstrate the 
application of the SDSS framework for the 
elucidation and prediction of Australian stream 
habitats. The proposed framework SDSS allows 
understanding of spatial patterns in stream data 
using unsupervised ANNs (SOMs). After 
Horrigan et al. (2003) have successfully applied 
SOMs for the classification of freshwater 
macroinvertebrate assemblages in Victoria we  
developed the method further to determine  
spatial patterns for natural variability of 
catchments using biological as well as physical 
variables and explaining those patterns by the 
corresponding component maps.  This approach 
reveals unusual patterns and outliers that proves 
to be useful for environmental impact assessment. 

It can be developed further to a nationwide 
diagnostic system for catchment and stream 
systems. 

R = 0.79 

We applied supervised ANN for the predictive 
modeling of the Victorian stream system based on 
the “reference approach”. The correct predictions 
for stream macroinvertebrates in Victoria varied 
from 68.44 to 92% with an average of 77.71% 
which were slightly weaker than the results for 
the Queensland stream system obtained  by 
Hoang et al. (2001) using the same “clean-water” 
or “reference” approach. This difference may 
result from the use of only 21 predictor variables 
for the Victorian stream compared to 39 for the 
Queensland streams.  
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Predicted output 
Hoang et al. (2001) developed predictive models 
for the occurrence of 40 stream macroinvertebrate 
families using the “dirty-water” approach. Data 
used for this study were taken from both reference 
and degraded sites (2056 samples) containing 
physical and chemical variables. The average 
prediction accuracy of ANN models was 97%.  

R = 0.7 

In this paper we also tested the applicability of 
ANN for modeling taxonomical diversity of 
macroinvertebrates and macrophytes in NSW 
streams by using the “dirty-water” approach. This 
was more challenging in comparison with the 
previous study because of: a) the limited size of 
the dataset, and b) variables being modeled were 
overall taxonomic reachness rather than single 
taxa occurrence.  
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Predicted output Even though there were only 122 samples of the 
NSW streams system available, results of the 
predictive modeling of two biological variables 
for the “dirty-water” approach demonstrated that 
supervised ANNs can even cope with relatively 
small datasets from the diverse range of 
geographical locations and habitats. 

The development of “dirty-water” models leads to 
“what if” or scenario analysis. It will allow not 
only to review known impacts of the past but also 
to predict potential impacts emerging from urban 
development and global changes on Australian 
stream ecosystems.  

Extensive databases (like the database from 
QDNR) collected over many years over vast areas 
are most likely to contain the information on 
various conditions including extreme events like 
flood and drought. When ANN has learned the 
respective pattern  from such data, it should be 
possible to model it in a range of different 
geographical locations and conditions. In a 
similar approach Dedecker et al. (2003) have 
assessed sensitivity and robustness of predictive 
neural network ecosystem models for the 
simulation of different management scenarios 



using small dataset (120 samples). Three case 
studies have shown that ANN models are in 
general quite robust with a rather high predictive 
reliability.  

The stream decision support system SDSS 
provides a flexible framework for further 
development. While new data and models can 
easily be integrated, the potential users have also 
easy access to archival and retrieval of data.  
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