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Abstract: A Geographical Information System (GIS) provides a powerful collection of tools for the 
management and visualization of spatial data. These tools can be even more powerful when they are 
integrated with methods for spatial data analysis. In this context, we provide several examples that show the 
power of exploratory spatial data analysis (ESDA) within a GIS and how this can provide the foundation for 
more sophisticated probabilistic modeling. While the ESRI’s ArcGIS software now facilitates the integration 
of spatial data analysis and GIS functionality, more tools are needed for comprehensive spatial data analysis. 
We suggest how to implement additional spatial statistical methods within a GIS, including methods for 
using non-Euclidean distances in the analysis of geostatistical, lattice, and point pattern data. 
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1. INTRODUCTION 

Statistical analysis within a commercial GIS 
(Geographical Information System) is rapidly 
becoming an impressive suite of tools. Until 
recently, statistical analysis was limited to 
visualization and exploratory data analysis, while 
statistical modeling was considered problematic 
for implementation within a GIS. However, 
probabilistic reasoning and statistical modeling 
are now important components of GIS science, 
and users of commercial GIS software are 
beginning to want more sophisticated statistical 
tools for spatial analysis.  

We discuss our ideas for data exploration and 
modeling within the ESRI GIS, trying to balance 
a variety of user needs with a software 
developer’s perspective. We believe that GIS 
provides a practical approach to data exploration 
and this helps to identify areas where statistical 
modeling could be most useful. In this context, 
we suggest new methods for future development 
and implementation in GIS.  

2. SPATIAL ANALYSIS AND SPATIAL 
DATA ANALYSIS IN GIS SOFTWARE 

Bailey and Gatrell (1995) distinguish between 
spatial analysis, the study of spatial phenomena 
using the basic GIS operations such as spatial 
query, join, buffering, and layering, and spatial 
data analysis, the application of statistical theory 
and techniques to the modeling of spatially-
referenced data, which is the discipline of spatial 
statistics. ESRI’s GIS software includes modules 
that address both tasks, namely the Spatial 

Analyst and the Geostatistical Analyst extensions 
to ArcGIS. While there are some similarities 
between these two extensions, there are also some 
key differences. Spatial Analyst functions allow 
the user to construct maps of where things are and 
how they change, find what is inside or nearby, 
and identify the largest and smallest values in the 
area under investigation. Simple descriptive 
statistics and statistical graphics such as means, 
standard deviations and pie charts are often 
enough to quantify the variability in the data and 
the results. Zonal addition, proportional 
allocation, and buffering are often sufficient for 
combining data from different spatial units. 
Figure 1 shows the main menu of the Spatial 
Analyst program that provides a comprehensive 
suite of deterministic functions for spatial 
analysis.  

 
Figure 1. Main menu of the Spatial Analyst. 



For many GIS users, these analyses provide more 
than enough capability for most of the 
applications of interest. However, the analyses 
ignore uncertainties in the data and the results and 
produce new surfaces without taking into account 
the errors that propagate with each operation on 
the data. Unfortunately for some researchers, this 
will not give an adequate analysis and many users 
require much more sophisticated methods for 
spatial data analysis. These necessarily require 
inferential spatial statistics: estimation, prediction, 
and hypothesis testing. ESRI’s Geostatistical 
Analyst extension to ArcGIS provides a greater 
suite of both qualitative and quantitative statistical 
tools for spatially continuous data. Figure 2 shows 
the main menu of this extension with a list of the 
exploratory spatial data analysis (ESDA) tools 
that are included. When these tools are 
implemented, graphical dialogs link the results to 
maps and data tables, allowing the user to quickly 
and effectively assess the variability, distribution, 
correlations and cross-correlations, and large-
scale trends in the data.  

Figure 2. Main menu of the Geostatistical 
Analyst. 

For modeling the user can select from a variety of 
kriging models with output in the form of 
predictions, prediction standard errors, quantile 
and probability maps (Figure 3).  

 
Figure 3. The geostatistical method selection 
dialog. 

Additional tools include several approaches for 
data transformation and detrending. The user can 
rely on the default parameters or make more 
specific choices using the graphical dialogs that 

facilitate covariance modeling, selection of search 
neighborhood, and provide validation and cross-
validation diagnostics. Many options for mapping 
and post-processing are available.  

Geostatistical Analyst has several thousands of 
users and they have very different backgrounds 
and interests. Unfortunately, many researchers 
use the software only to make maps. Many 
statisticians do not understand or appreciate the 
full utility of GIS for spatial data analysis. Other 
researchers are not educated in spatial statistics, 
so they are unaware of techniques for modeling 
uncertainty, even though they realize that 
measuring and modeling without errors is 
impossible. At the same time, they readily use 
automatic “geoprocessing” tools that 
arithmetically add or average raster data values in 
the cells without taking into account the impact of 
error propagation on the results. After several 
such geoprocessing steps, the resulting data 
structure can be completely random and, 
consequently, decisions made from these results 
may be wrong. Still others use the software for 
analyses for which it was not designed. This 
problem often arises when users implement 
Geostatistical Analyst with aggregated data that 
are associated with spatially discrete units. For 
example, we have watched users discuss which 
interpolator, inverse squared distance weighting 
or splines, is better for mapping of proportions of 
females in burial populations. What is the best 
prediction of the proportion of females outside 
cemeteries? One would hope it is zero. There are 
other methods in spatial statistics that are more 
suitable for this type of data. For example, a 
marked point pattern analysis that incorporates an 
attribute value recorded at each location could be 
used.  The mark would be the occurrence (or not) 
of a female burial at each location, and a marked 
point pattern model could then be used to estimate 
and map the intensity of females in burial 
populations, assuming that data point locations 
are given by nature and not selected by the user.  

Hopefully, all of these problems can be solved by 
education. Case studies can help to show users 
how GIS can and should be used for more 
sophisticated statistical analysis and modeling. 

3. IMPROVED SPATIAL DATA 
ANALYSIS USING GIS 

Good data visualization is important both for data 
understanding and for representing the results of 
statistical analysis. Without a GIS, users may 
struggle to create meaningful visualization tools. 
For instance, consider the graph in Figure 4 that 
displays land sales with different characteristics.  



Consider instead the type of map that can be 
produced using GIS. Figure 6 shows a map of 
ozone measurements in 1999 in Southern 
California. The city of Los Angeles lies in a 
coastal plain, surrounded by mountains that 
separate a desert from the coastal climate. In the 
summer, pollutants in the lower layer of air 
(smog) move from the city to the east, but are 
blocked by the mountains. So, to obtain a better 
understanding of how pollution might move, the 
topography is also displayed in the same map. 
One of the major sources of air pollution is 
exhaust from motor vehicles, so the major road 
networks are also displayed on the map. Good 
data visualization can help us to construct a model 
for air quality. For example, we can now easily 
see a large-scale east-west trend in the 
measurements and the barrier to movement that 
the mountains provide. The larger values of ozone 
tend to be close to the mountains in the east, and 
the ozone concentration declines toward the coast. 
Thus, any model we select should account for this 
trend. This can be easily investigated further 
using Geostatistical Analyst’s ESDA tools and the 
results can then be used to choose an appropriate 
geostatistical model. 

 
Figure 4. Typical data representation without GIS 
usage. 

Graphs like this are typical and plentiful in many 
of today’s journals, but the utility of this graph is 
very low. In many papers on spatial statistics, the 
authors do not even use graphics but only one-
dimensional graphs and tables with estimated 
parameters and diagnostics. Land cost depends on 
many factors and many of them are readily 
available for GIS users (street networks, school 
and shopping locations, etc). Visualizing these 
factors with a map could be a very valuable tool 
for understanding land costs and the results on 
any statistical analysis.  

Good visualization should be the prelude to 
sophisticated modeling. For example, consider the 
contour map in Figure 5 that is typical of maps 
displayed in statistics journals. Such maps are 
often the sole visualization tool used to support 
the development of sophisticated statistical 
models. This illustration is not very helpful for 
understanding the spatial variation in the data, or 
for investigating hypothesis about the reasons for 
such variations. Unfortunately, maps like this are 
plentiful in the scientific literature.  

 

Figure 6. Ozone measurements, elevation, and 
major road network visualization using ArcGIS, 
Los Angeles area. 

There are other useful GIS features which can 
also improve statistical data analysis. With 
advances in GIS, the ability to find and use 
necessary data has grown tremendously. For 
example, ArcGIS allows users to find and 
immediately use relevant data associated with a 
selected region on the map by displaying a list of 
all data sources available for this area on the 
Internet servers. The user can also do a search for 
a specific type of data. Even if the user did not 
find exactly what is necessary, similar data can be 
used for comparison with data under 
investigation.  

Figure 5. The result of predictions is visualized 
without GIS. Modern GIS software allows the management of 

very large datasets. This is particularly important 



Figure 7. 3D view of the area near Los Angeles. in the environmental sciences because large, 
remote-sensing images are easily obtained for 
minimal cost. As another example, California 
daily measurements of air quality are available for 
many cities for the last 22 years and queries 
within a GIS can be very helpful for exploring 
such large data sets. With so much spatial data 
available over the Internet, we can easily obtain 
elevation measurements, census and 
epidemiological data, land use classifications, and 
meteorological information. Often these data are 
collected using different coordinate systems, and 
a GIS is very helpful in changing projection.  

Intuitively, distances between objects on this map 
should not be “as the crow flies.” Figure 8 shows 
the result of ozone concentration predictions over 
the elevation map. In this analysis, the distance 
between locations was calculated using a non-
Euclidean distance metric that incorporates the 
mountainous barrier to ozone movement. This 
metric constructs a cost surface based on 
information on altitude (Krivoruchko and Gribov, 
2002). 

 

4. SPATIAL STATISTICS TOOLS AND 
MODELS FOR IMPLEMENTATION IN 
GIS IN THE NEAR FUTURE 

One interesting consequence of developing 
statistical software for a large audience is the 
possibility of learning what “typical” users want. 
We found that the ideal world where data are 
accurately measured and normally or log-
normally distributed is not common in most user 
applications and the spatial coordinates of the 
data are often not known exactly. In this section, 
we will discuss two important options to be 
implemented in the spatial data analysis software 
in the near future: the use of non-Euclidean 
distances and methods for adjusting for 
measurement and locational errors. 

Non-Euclidean distances 
Figure 8. Visualization of the result of 
predictions using GIS. Many GIS users are analyzing data in the 

environment with natural and artificial barriers. 
For many applications, the map in Figure 6 that 
uses meteorological, elevation, and traffic data in 
addition to the pollution measurements, together 
with some basic results from typical GIS 
functions like buffering, will be enough to 
understand the spatial distribution of ozone. 
However, many applications require more 
sophisticated analytical methods. Continuing with 
the example above, Figure 7 shows a 3D view of 
the area near Los Angeles shown in Figure 6.  

For some variables of interest, such as air 
pollution, we need to factor in the mountainous 
barriers to movement.  For other variables such as 
ocean temperature and fish abundance, we need to 
take into account the shape of the coastline. 
Another example is provided by halibut 
abundance near the western Canada coastline 
(Figure 9. Data provided by the International 
Pacific Halibut Commission). Here the small 
islands are barriers to aquatic movement. Thus, 
we would want to use a distance metric that 
reflects how the fish swim. 

 

Traditional analysis of geostatistical and spatial 
point processes are based upon straight-line 
distance. In practice, environmental and artificial 
barriers due to rivers, roads, soil types variability, 
and other natural boundaries always exist and it is 
necessary to account for them to create a 
meaningful analysis (e.g., as part of a process 
model approach to spatial analysis as described in 
Laffan, 2002). For example, weights to the 
neighbors in lattice data analysis can be naturally 
based on travel or economic distance between 



objects in addition to the length of the common 
border and distance between polygon centroids. 

 
Figure 9. Halibut abundance near the western 
Canada coastline. Circles are observational 
locations.  

Figure 10 displays crime events data over a street 
network over a six-month period in a medium 
sized city. Crime tends to be close to the road and 
the places where people live or work. Analyzing 
the spatial distribution of crime dictates the usage 
of a more sophisticated distance metric than a 
simple straight-line distance metric. 

The next version of the Geostatistical Analyst 
software will use a general and flexible approach 
to the problem of using non-Euclidean distance 
metrics in spatial data analysis. This approach is 
based on a cost weighted distance, a common 
raster function in GIS that calculates the cost of 
travel from one cell of a grid to the next. 
Specifying high costs for travel between certain 
cells effectively prevents movement between 
these cells. The determination of the cost value at 
each location, calculation of distances between 
sampled locations and unsampled ones, and 
choice of covariance function in the case of 
geostatistics is discussed in Krivoruchko and 
Gribov, 2002. 

Measurement and locational errors 

Two main sources of error are data collection and 
data analysis. Errors propagate as a result of data 
manipulations: the errors in maps are modified 
and usually lead to increased output map 
uncertainty and may lead to wrong conclusions. 
Even in a well-designed experiment, errors often 
arise from imperfection in the experimental setup 

and the researcher’s inconsistencies. For most 
experiments with  

 
Figure 10. Example of crime events displayed 
over street network. 

measured outcomes, if an experiment is repeated 
many times, measurement will be slightly 
different each time. Measurement errors can be 
attributed to error in the measurement device, 
human recording error, changes in the 
measurement conditions, data integration, and 
faulty sampling techniques. Therefore, the 
inevitable errors of measurement are something 
science has to live with and the true signal we are 
interested in has to be extracted from the noisy 
data. Such errors also arise in determining 
locations. Examples of locational errors include 
measurements collected for territories (polygons) 
for which the area of which is unknown; use of 
centroids to measure the location of a polygon; 
truncated coordinates; and coordinates distorted 
by map projection.  

Measurement error in geostatistics theory was 
developed in the form of the filtered kriging from 
the very beginning (Gandin, 1963). Locational 
errors were discussed from time to time, but 
detailed theory has appeared only recently 
(Cressie and Kornak, 2002). The Geostatistical 
Analyst now allows filtered kriging and future 
releases will allow for adjustment of locational 
errors. 

Consider an example of lightning strikes in 
Boulder County, Colorado, on September 1, 2000 
(Figure 11). The red polygons reflect a radius of 
uncertainty in the location of the strikes. In 
addition to the approximate data location, there is 
information on the polarity and strength of the 
lightning strikes. Positive polarity is more likely 
to ignite wildfire. We could use the Geostatistical 
Analyst to create a probability map of positive 
polarity lightning strikes and use this as an 
indication of the risk of a wildfire. However, this 
does not account for the spatial distribution in the 
lightning strikes: there may be far more strikes in 
other areas, so even if they have negative polarity, 



5. CONCLUSION there might be increased fire risk simply due to 
the number of strikes. Although the requirements of GIS users are 

varied, they all have two needs in common: 
interactive visualization and the ability to use 
statistical methods and models for spatial data. 
Many users may not be knowledgeable about 
statistical theory, so they will appreciate a 
software that helps them make good choices for 
their data and application. Others more 
knowledegable in statistics will appreciate the 
visualization tools in GIS that are lacking in 
statistical software packages. They will also 
appreciate the ability to choose to among methods 
and models that comes with a comprehensive and 
flexibile set of tools for interactive spatial data 
analysis.  

 
Figure 11. Lightning strikes in Boulder County, 
Colorado, on September 1, 2000 

We think that it is much easier to incorporate 
modern spatial statistics into GIS environment 
than it is to implement modern GIS functionality 
in statistical software. At the same time, a user 
friendly and understandable implementation of 
statistical models into the GIS core is the most 
efficient way to involve more people in inferential 
spatial data analysis. 

From a spatial statistics viewpoint, these data 
would be considered as a marked point pattern 
process, a process that is doubly stochastic: one 
process locates the lightning strikes (a point 
process) and another process controls the strength 
and polarity associated with strikes at the 
recorded locations (random field process). 

To account for errors in identifying the locations 
of the lightening strikes, we could define much 
larger polygons that partition the data according 
to soil and forest types and then count the number 
of lightning strikes and estimate polarity 
distribution in the potentially overlapping 
polygons. Any polygonal data analysis on such 
aggregated data would require a sophisticated 
distance metric. 
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