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Abstract: Simulating the actual groundwater recharge rate of groundwater models is often a difficult 
procedure and is usually determined from an inverse method based on observations of water table depth 
alone. However, when studying land use change, it is necessary to understand how the local unsaturated zone 
controls recharge rates. The complicating factors of soil heterogeneity and macroporosity effects are difficult 
to represent in a physical-based model of the unsaturated zone. However, it is possible to observe soil 
moisture patterns across the unsaturated zone across space and time using Neutron Probe (NP) data. This can 
be done in-situ and under a range of land uses. Whilst it is appreciated that NP data can have its own errors 
and does not actually depict the recharge rate itself, it does give valuable information of unsaturated zone soil 
moisture activity. Equally, the physical processes of unsaturated zone activity, although well established, in 
the Mualem-van Genuchten (MVG) equations, are themselves quite complex with parameters that are 
difficult to determine a priori. Here, this paper shows two techniques for addressing these problems. The first 
analysis will clearly show that a number of the MVG parameters can be fixed without affecting the recharge 
rate of the model, this gives rise to a simplified model called the Simplified MVG (SMVG). Secondly, an 
inverse optimisation technique is proposed that capitalises on the observed NP soil moisture profile data 
which minimises soil heterogeneity and NP errors effects by ‘smoothing’ moisture fluxes across multiple soil 
layers. The technique gives a physical-based origin to the SMVG model parameters even though the soil 
output hydraulic conductivity profile model uses ‘effective’, optimised parameters. The method proposed can 
capitalise on field observation and may allude to even better hydro-geophysical data measurements that can 
be used to establish a simple, field characterisation technique to understand the groundwater recharge term 
across space. 
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1. INTRODUCTION 

To predict the impacts of land use change (such 
as afforestation and defforestation) on recharge, it 
is vital that in-situ unsaturated zone 
measurements are made beneath the specified 
land units. Thus, the soil parameters that describe 
the unsaturated hydraulic conductivity, need to be 
known accurately, and must reflect the soil 
heterogeneous effects.   

The unsaturated hydraulic conductivity is often 
determined from measurements of soil hydraulic 
properties, alone. However, these methods are not 
totally satisfactory, for example, Van Genuchten 
and Nielson (1985) and by Luckner et al. (1989), 
show that the measurement of the saturated 
hydraulic conductivity from soil samples, does 
not pick up the overall flow such as macropore 
flow. 

To overcome this problem, the soil parameters 
that are needed to determine the unsaturated 
hydraulic conductivity, must be performed in situ, 
in a non-destructive way, in order to pick up all 
the key recharge processes, for example bypass 
flow. At this time, in-situ NP well logging is a 
suitable method for this task, see Chapellier 
(1992). Thus it should be possible to determine 
the unsaturated hydraulic conductivity as a 
function of depth, for each NP well logging 
location. As such time series measurements of the 
soil moisture profile, can give repeat patterns 
across a range of wet and dry periods.  

To pursue this methodology, one must be able to 
approximate the recharge rate inferred by the time 
series of observations using an accepted physical 
basis. This must then be followed by a robust 
optimisation technique for determining the key 
recharge parameters across the soil profile. 



The first step is to verify that the Mualem-van-
Genuchten model (MVG) can be used to 
determine the unsaturated hydraulic conductivity 
using soil moisture measurements alone. Also, an 
investigation of the model is carried out to test if 
the model can be simplified without affecting the 
recharge.  

Mualem (1976) and van Genuchten (1980) 
described the unsaturated hydraulic conductivity 
function with the Malem-van-Genuchten model 
(MVG): 
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The second step is to develop a scheme that 
enables the determination of the unsaturated 
hydraulic conductivity for every layer. There are 
complications due to the fact that optimising the 
layers sequentially for highly heterogeneous soil 
produces poor results. The heterogeneity is 
described by using a technique that employs the 
average time series soil moisture, and then the 
remaining soil parameters are optimised by using 
a special scheme in order to produce a good 
agreement between the simulated and observed 
soil moisture as shown in Figure 1. In Figure 1, 
the 40 soil layers are well reproduced for the dry 
and wet period, by only optimising 2 MVG 
parameter per layer, and 2 parameters to represent 
the heterogeneity for the whole column. 

where K(Se), is the unsaturated hydraulic 
conductivity  (L T-1), Ko is a optimised saturated 
hydraulic conductivity (L T-1), and l (-) is a shape 
factor (l >0).  

Ksat is denoted to be the physical value of the 
saturated hydraulic conductivity (L T-1). 

2.2. The ‘non physical’ soil parameters. 

The six soil parameters of the MVG model are: 
θsat, θres, Ko, n, l, α . Kosugi (1999) and 
Hoffmann-Riem et al. (1999) concluded that the 
soil parameters should not be interpreted as true 
physically meaningful parameters but as 
empirical shape factors. The study found that    
Ko = Ksat and l=0.5 leads to very poor prediction 
of the unsaturated hydraulic when compared to 
optimised Ko and l values. Consequently the soil 
parameters determined from inverse modelling 
are been treated as non physical effective 
parameters. Thus the finding of this paper, argue 
that effective values of the K(Se) relationship can 
be found for any monitored location. 
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3. SIMPLIFING MVG MODEL 

Figure 1.  Snap shot of the observed and 
simulated soil moisture, for the driest and the 

wettest period for Oak forest.  

3.1. Simulating a physically based recharge 
model : SHELUC 

 

SHELUC recharge model (System Hydrologique 
European Land Use Change model) developed in 
Newcastle, is a physically-based hydrological 
model that uses both the MVG model and the 
Richards equation. As such it can be used to 
create multiple simulation outputs that can be 
analysed to find out the sensitivity and operation 
of the MVG parameters. Thus, any range of soil 
types and wetting and drying scenarios can be 
tested.  

2. THE MUALEM-VAN GENUCHTEN 
MODEL 

2.1. The equations 

The soil moisture retention curve can be obtained 
from van Genuchten (1980): 
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A more detailed description of SHELUC is 
thoroughly described in (Parkin et al., 2003). where Se is the relative saturation, the parameters 

θres and θsat are respectively residual and 
saturated water contents, where θ is volumetric 
water content (L3L-3), with θres < θ < θsat < 1, α 
(> 0) is related to the inverse of the air entry 
pressure    (L-1), and n (> 1) is a measure of the 
pore-size distribution (-).  

3.2. Rationale for fixing Ko and l 

Using MVG model simulations it was shown that 
Ko was not sensitive for the determination of 
K(Se). When Ko is kept constant and the other 



3.4.     The results of fixing Ko and l   soil parameters are optimised, negligible changes 
to K(Se) relationship was encountered for all 
ranges of soils. The only condition to be satisfied 
is that Ko ≥ Ksat. If equation 2 is written as:  

The agreement between SMVG and MVG as 
shown in Figure 2 are accurate for the complete 
range of soil textures in the UNSODA database. It 
can be concluded that SMVG can be used instead 
of the MVG with confidence for all range of soils 
types, the only condition is that Ko ≥ Ksat.  

K(Se)= Ko. Sel. Function(Se)       (3) 

By inspection Se ≤1, l > 0 and Function(Se) ≤ 1. 
Since the soil parameters are taken as ‘non 
physical’, the soil parameters used to describe  
Sel. Function(Se) are optimised to a value 
between 0 and 1. 
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It is found, that by keeping l constant and set 
equal to 1, also makes negligible difference to the 
overall K(Se) relationship. The soil optimised 
effective parameter, Function(Se) will adjust itself 
for any variation in the ‘physical’ value of l . 

The simplification of fixing l =1 and Ko ≥ Ksat is 
denoted as the Simplified Mualem van Genuchten 
model (SMVG). 
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3.3. Method to show the redundancy of Ko 
and l  

To validate the universality the SMVG model, 
different tests are been performed to show that 
there are negligible differences for all soils types 
between K(Se) relationship of the SMVG model 
and the MVG model.  

The soil parameters of the MVG model are tested 
for sand, loam, silt and clay soils. The soil 
parameters were derived from 235 soil samples 
from the international UNSODA database (Leij et 
al., 1996). The values of the soil parameters are 
found in Table 1.  
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Table 1. Average soil parameters for each soil 
texture group determined from the UNSODA 
database. 

 
θres 

(-) 

θsat 

(-) 

n 

(-) 

l 

(-) 
Ko 

(cm.d-1) 

Sand 0.052 0.396 2.233 1.29 173 

Loam 0.056 0.512 1.191 1.42 107 

Silt 0.031 0.428 1.377 0.82 50 

Clay 0.098 0.512 1.300 0.26 20 
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The soil parameters of the SMVG model that are 
been optimised are θsat, θres and n. It was found 
that the arbitrary given value of Ko= 400 cm. d-1 
for all soils gave excellent agreements. The 
parameter l is set equal to 1 in all simulations. 
The results are shown in Figure 2.  

Figure 2: For each soil textural the K(Se) relation 
is plotted for the MVG and the SMVG model. 

The agreements are excellent. 
 



3.5. Rationale for fixing the n parameter 4.1. Removing the redundant heterogeneity 
effects from the observed data sets Surprisingly, it was found that by optimising the 

remaining soil parameters θres, θsat, α against 
the SHELUC recharge model simulations, that no 
differences in recharge were encountered when n 
was kept fixed throughout the soil profile. In the 
current study the data that is presented in Figure 
1, is for a sandy soil. This means that only a small 
portion of K(Se) relationship has been tested, thus 
facilitating α to compensate for any fluctuation of 
n. This is well illustrated in Figure 3, where the 3 
log K(Se) relationship for n equal respectively to 
1.4, 1.6, 1.7 are plotted. Curiously the 3 plots 
meet at one point that is the average of the 
observed time series soil moisture, obsθ  (L3L-3). 
In this case study the variance of θobs is small. 

In the calculation of recharge the change in soil 
moisture ∆θj is more important then the actual 
value of θj in each layer. Thus by plotting ∆θ 
instead of θ, the “true” heterogeneity effects can 
be studied. When jθ∆ across layers are different 
to the overall pattern, then the heterogeneity 
layering effect is either: 

•  A faulty calibration curve that 
transforms raw NP data into the 
observed θ  value, (for example, the 
calibrated curve may be different for 
clay layers as for stony); 

• The soil moisture profile pattern and 
water movement caused by bypass flow. 

0.01

0.1

1

10

100

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
Volumetric water content

U
ns

at
ur

at
ed

 h
yd

ra
ul

ic
 

co
nd

uc
tiv

ity
 (c

m
/d

ay
)

N=1.4

N=1.7

N=1.6

Average water content of 
the observed data.

 

Ideally these anomalies need a priori correction. 
However, the current method can correct for any 
anomaly within the automatic optimisation 
scheme. This is achieved by smoothing across soil 
layers reflecting the transmission of water from 
one layer to another.  

Thus an a-priori improvement to acquiring 
accurate soil moisture profiles is desirable. 
However, the smoothing optimisation function, 
using the SMVG model does resolve apparent 
movements in water that eventually impact upon 
the groundwater recharge term. Figure 3 represents K(Se) relationship for the 

SMVG model with n being fixed. N.B. the 3 plots 
cross at obsθ . 5. A SIMPLE METHOD TO REDUCE THE 

HETEROGENEITY EFFECTS No differences in recharge were encountered if n 
was kept constant for dry or wet soils (the 
variance of θobs is small). However, it seems 
very unlikely that n can be kept constant for soils 
experiencing extreme conditions, (that is where 
the variance of θobs is high).  

5.1. Introducing the problem 

In order to quantify recharge under heterogeneous 
soil by using the Richards' equation, K(Se) is 
estimated for every layer by using the SMVG 
model with n kept constant for the whole profile. 
The soil parameters are calibrated against 
SHELUC model simulations, such that for every 
layer the simulated soil moisture θsimj (L3L-3) is 
matched with θobsj as shown in Figure 1. In our 
case study θobsj is monitored up to a depth of 9m 
and the soil column is divided into 40 layers (j=1 
to 40). There are 3 remaining soil parameters to 
be optimised (θresj, θsatj, αj) per layer j, resulting 
in a total of 120 soils parameters to be optimised.  

4. THE PROBLEMS CAUSED BY 
HETEROGENEITY 

Figure 4, shows the impact of heterogeneity 
effects on the soil moisture profile. The two main 
reasons for the discrepancy in soil moisture 
pattern are: 

• Errors caused by the inaccuracy of 
measuring highly heterogeneous soil 
with sharp discontinuous boundaries; 

• The inability of the flow models to 
handle rapid changes in water content.  5.2. Reducing the number of soil parameters 

to be optimised 

Here is presented a simple method that 
determines θresj  for each 40 layer with just 2 soil 
parameters θresmult, θresshift (-). The property used 



The simple solution to this problem is to optimise 
the different layers in a specified order and 
pattern as shown in Table 2. The “order of 
optimising the layers”, in Table 2, represent the 
different sequence of optimising the different 
layers. The 9m profile is divided in to 40 layers or 
cells. The grey boxes in Table 2, show the 
grouping of different layers in which the soil 
parameters have got the same optimum value. In 
the first step, all the layers have got the same 
optimum soil parameters (θsat1=θsat40 and 
α1=α40). In the second step only the upper root 
zone is optimised, and then the third step operates 
on the deeper intermediate zone.  It was found 
that optimizing from top-to-bottom produces 
better simulation result. The root zone is split into 
2 zones, and then the intermediate zone is split 
into 2 parts and the optimisation is repeated. 

is shown in Figure 4. The average soil moisture 
for each layer, jobsθ   (L3L-3) gives detailed 
information about the lithologocal effects. In the 
profile there are high jobsθ  (-1,5m and -3m) 
representing layers that are wetter, due to local 
slow percolation and lower K(Se). These layers 
are known to contain a greater percentage of clay. 
On the other hand in the profile there are lower 

jobsθ  (-1m, -2m and -3m) representing layers 
that are drier, due to water moving faster due to 
higher K(Se). These layers are known to contain a 
higher percentage of pebbles.   

-9

-8

-7

-6

-5

-4

-3

-2

-1

0.05 0.10 0.15 0.20
Volumetric water content

D
ep

th
 (m

)

Sandstone

Layer of  
clay

   Layer 
of pebbles

 

Table 2: Represents the order of optimization the 
different groups of layers. In this particular case 
the root zone is set to be 2m.  

Depth ORDER OF OPTIMISING THE LAYERS
(m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0

Layers to be optimised together
 

Figure 4. The average time series soil moisture 
for every layer over a period of 3 years jobsθ   for 

the oak site, reflecting information on the 
heterogeneity. 

θresj is computed for the 40 layers by using the 
following equation: 









−+= obsobsresobsresres jmultjshiftj θθθθθθ ..       (5) 

The limitation of the current method is that to 
determine the lithological effects successfully, 
one needs at least a dry and wet period.  

5.3. Optimising the 40 layers 

It was found that optimising each layer separately 
one by one produces poor results, therefore a 
strategy to optimise the 80 soil parameters 
simultaneously is presented. 

The origin of poor results invariably due to 
macropore flows and lenses of clay and pebbles 
(as shown in Figure 4). Thus optimisation that 
isolate each layer without considering the overall 
water movement causes unrepresentative 
parameters and thus poor overall recharge results. 
Therefore when optimising the profile soil 
parameters, one must consider firstly, the whole 
profile at the same time. Secondly, grouping local 
layers (or zones) together can successively 
address both heterogeneous patterns and identify 
an effective unsaturated zone value for those 
layers. 

The maximum amount of splitting depends on the 
severity of the heterogeneity in the profile. In the 
case study significant improvements in the 
matching of the θobs to θsim were achieved until 
the 6th step of splitting and well before the layers 
required individual optimisation.  

6. CONCLUSIONS 

Mualem-van-Genuchten model is well suited to 
determine the unsaturated hydraulic conductivity 
accurately when an inverse method is proposed. 



However, the optimum soil parameters must be 
treated as non physical effective values. It has 
been demonstrated through SHELUC recharge 
model simulations and through sensitivity 
analysis of Mualem-van-Genuchten model that a 
simplified MVG model exists for all soils types 
with out altering the unsaturated hydraulic 
conductivity profile and recharge estimates. 
Equation 2 is thus simplified by removing the 
shape factor l, and by fixing the saturated 
hydraulic conductivity Ko to a value higher then 
the expected value.  

For sandy dry soils, it was found through runs of 
SHELUC recharge model, that no difference in 
recharge was encountered when the soil 
parameter n is kept constant. There is some 
evidence that this can be generalised for soils 
having small range of soil moisture. 

A straightforward robust scheme has been 
developed to simulate highly heterogeneous soils 
profiles, by fitting the 3 soil parameters (θresj, 
θsatj, αj) for each per layer. However θres was 
not optimised per each layer, instead an equation 
was developed that uses two optimum parameters 
per layer. The pattern of soil profile water 
movement and the effects of the heterogeneity is 
abstracted from knowledge of the average soil 
moisture profile. Subsequently a simple technique 
has been developed to optimise the 80 remaining 
parameters, in order that the overall simulated soil 
moisture gives a good match with the observed 
time series soil moisture profile.  

The ability to use a simplified MVG model, when 
used in tandem with observed soil moisture 
profile data, gives a good insight to recharge 
estimates under a range of land uses. The 
procedure creates an effective unsaturated water 
movement model based on effective parameters 
derived from the MVG. The ultimate accuracy of 
the method is dependent on the accuracy of the 
hydro-geophysical methodology used. Even if 
inaccuracies in the method are present, there is 
still valuable information in the observations that 
can be analysed by using the optimisation, 
‘smoothing’ process proposed here. 
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