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Abstract: Radar rainfall is estimated by converting radar reflectivity (Z) into rainfall inten
appropriate Z-R relationship. Even if there is no error in the measurement of either reflec
intensity, there is variability in the Z-R relation due to variability in the distribution of r
caused by the effect of different storm types. This paper presents a storm classificat
partitioning of radar reflectivity into convective and stratiform components. The propos
criteria are derived by investigating the relationship between hourly spatial rainfield statis
types. The hourly vertical reflectivity profiles that are derived from the three-dimension
reflectivity field and the hourly radar images are used to validate the proposed criteria. We
70% of the hourly rainfields were classified correctly when using the proposed classificati
radar rainfall calibrations for convective and stratiform rainfall are performed separately. 
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1. INTRODUCTION 
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terminal velocity of the raindrops as a function of 
their diameter. These parameters can be estimated 
empirically using measurements of Z and R, or 
derived from a parameterisation of the raindrop 
size distribution.  

To increase the accuracy of radar measurements 
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Differences between raindrop size distributions of 
convective and stratiform rain will cause the Z-R 
parameters of these two rainfall types to be 
significantly different (Atlas et al., 1999). Using a 
single Z-R relation to estimate radar rainfall will 
lead to a high uncertainty in radar rainfall 
estimates. Hence, the reflectivity values need to 
be discriminated into convective and stratiform 
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Figure 1.  Vertical profile of stratiform (22 Apr 

01) and convective reflectivity (30 Jan 01). 
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Yuter and Houze (1996) found that, separation of 
Z-R relations for convective and stratiform 
precipitation are not justified, and techniques to 
distinguish between convective and stratiform 
precipitation based solely on the characteristics of 
drop size distributions are not likely to be 
accurate. However, the study of Atlas et al. 
(1999) shown that the characteristics of the 
raindrop size distribution are remarkably 
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5. APPLICATION TO THE KURNELL 
RADAR 
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6. RESULTS AND DISCUSSIONS 
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Figure 4.  Conditional mean rain gauge rainfall.  
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