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Abstract: During the past decade downscaling has become an established field to relate atmospheric 
circulation to surface variables for forecast and prediction of the regional climate. This article is a part of an 
ongoing study to develop statistical downscaling methods to enable downscaling of rainfall at hydrologically 
relevant spatial scales. This paper reviews the development and recent advances in stochastic downscaling 
techniques. Emphasis is given on application, advantages and limitations of currently used approaches. 
Results from an application of a non-parametric downscaling technique to select predictors (based on leave-
one-out cross validation) for downscaling of point daily rainfall occurrence from area-average rainfall 
occurrence and temperature from ten locations near Sydney are presented. Results of the study indicate that 
the area-average temperature range and area-average rainfall occurrence on the current day are good 
predictors of point rainfall occurrence, for the Sydney region. 
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1. INTRODUCTION 

It is well known that there is a strong sensible 
physical linkage between climate on the large 
scale and weather on the local scale. Downscaling 
has emerged as a potential tool to relate 
atmospheric circulation patterns to surface 
variables for generation of series, for forecasting 
and for predicting the regional climate from large-
scale circulation data. The general limitations, 
theory and practice of downscaling are well 
described in the literature (Wilby, 1994; 1997; 
Wilby and Wigley, 1997; Yarnal et al., 2001). A 
common classification describes downscaling 
techniques using two categories: i) Dynamical 
downscaling (based on physical dynamics and 
more commonly known as regional climate 
modelling) and ii) statistical or empirical 
downscaling. 

The list of large-scale variables used in 
downscaling is very broad and comprise 
precipitation, temperature, sea level pressure 
(SLP) and geo-potential heights at 500-hPa level, 
800/850 hPa and 700 hPa. Useful summaries of 
downscaling techniques and the predictors used 
are presented in Wilby et al. (1998), Wilby and 
Wigley (1997) and Yarnal et al. (2001). However, 
outside of passing references in many studies to 
the effect that a range of predictors were 
evaluated, there is little systematic work that has 
explicitly evaluated the relevant skill of different 
atmospheric predictors (Winkler et al., 1997). The 
present study provides a useful step in this 
direction. 

This paper is organised as follows. The next 
section reviews empirical downscaling 
approaches. Limitations and challenges in 

downscaling and future research scope are 
discussed in sections 3 and 4. Section 5 gives a 
preliminary application of a non-parametric 
downscaling model to select the best predictors by 
downscaling the point rainfall occurrence at 
multiple stations and comparing the results. The 
paper concludes with a discussion of the 
approaches to be investigated and formulated in 
later stages of this work.  

2. OVERVIEW OF EXISTING 
EMPIRICAL DOWNSCALING 
APPROACHES 

Empirical downscaling involves developing a 
relationship between large-scale atmospheric 
predictor variables and circulation characteristics 
(e.g. area average precipitation or temperature, 
mean-sea level pressure, and vorticity) with local- 
scale meteorological variables (e.g. precipitation, 
temperature, and evaporation). It relies on the 
principle that there is a correspondence between 
predictor variables and the local-scale climate. 
The concept of downscaling does not imply that 
the local climate would be solely determined by 
the large-scale processes. Rather, the local climate 
is seen as a random process conditioned upon a 
driving large-scale climate regime.  

There are many ways to categorize empirical 
downscaling techniques. von Storch (1999); 
Yarnal et al. (2001) and Prudhomme et al. (2002) 
provide an excellent review and discussions of 
various downscaling techniques. A common 
approach classifies these techniques using two 
broad categories: i) deterministic (regression 
analysis based) approaches and ii) stochastic 
(weather generator based) approaches. 



2.1. Deterministic approaches 

Deterministic downscaling approaches involve 
linear/non-linear relations either between 
variables at local and large scales, or between 
atmospheric patterns and the local-scale variables 
of interest. 

In the simplest form, large scale and local scale 
variables are the same (Sailor and Li, 1999). More 
sophisticated techniques consider area averages or 
modelling of means and covariances (Bürger, 
1996) and Artificial Neural Network (ANN) 
based approaches (Cavazos, 1997; Wilby et al., 
1998; Cavazos, 1999). Another category includes 
approaches relating a weather pattern or 
classification scheme to station or region-average 
meteorological data using a correlation approach 
(Conway and Jones, 1998; Cavazos, 1999).  

2.2. Stochastic approaches 

These approaches involve selection of a 
classification scheme for large-scale atmospheric 
variables (which are termed “weather patterns”), 
and defining the relationship(s) between local-
scale variables and weather patterns in a 
stochastic manner (Bardossy and Plate, 1992; 
Hughes and Guttorp, 1994; Wilby et al., 1994; 
Lattenmaier, 1995; Wilks, 1999; Charles et al., 
1999). Hughes and Guttorp (1994) described a 
non-homogeneous hidden Markov model 
(NHMM) to relate local-precipitation occurrences 
to large-scale variables by introducing the hidden 
weather state as a link between the two scales. 
The model was applied at 30 raingauge stations in 
southwestern Australia (Hughes, 1999). Wilks 
(1999), Zortia and von Storch (1999) and 
Semenov et al. (1998) compare these approaches. 

Nearest neighbor resampling considering 
Markovian dependence has been used to generate 
local scale variables in a physically consistent 
manner (Lall and Sharma, 1996; Harrold at el., 
2002). Rajagopalan and Lall (1999) compared 
nearest-neighbor resampling with a parametric 
time series model due to Richardson (1981). 
Buishand and Brandsma (2001) used nearest 
neighbor resampling for multisite generation of 
daily precipitation and temperature conditioned 
on atmospheric variables, at 25 stations in the 
German part of the Rhine basin. 

3. ASSUMPTIONS, LIMITATIONS AND 
CHALLENGES IN EMPIRICAL 
DOWNSCALING 

Empirical downscaling focuses on statistical 
descriptions of the relationships between predictor 
and local-scale variables, paying little attention to 
physical linkages between the atmosphere and the 

surface environment. Some major assumptions 
include stability of the statistical relationships 
over time, integrity of the GCM output, and 
application of these downscaling techniques 
calibrated for the present climate, to future 
climate (Wilby, 1997; Wilby and Wigley, 1997; 
Yarnal et al., 2001). 

The relationship between the atmosphere and 
surface variables can be unstable, since short-term 
relationships are conditional on long-term 
variations in the climate system. The surface 
variable under consideration may also be 
dependent on additional atmospheric variables. It 
is also assumed that GCMs adequately represent 
the large-scale features of the atmosphere. 
However, it has been observed that errors in 
empirical downscaling can be a result of improper 
simulations of long wave amplitudes, pressure 
fields and geopotential heights (Yarnal et al., 
2001).  

4. FUTURE RESEARCH SCOPE 

Empirical downscaling has emerged as a potential 
tool to relate atmospheric circulation patterns to 
surface variables. With the increase in computing 
power, the possibility of greater use and 
refinement of empirical downscaling methods and 
introduction of new techniques has also increased. 
One possible research area is better understanding 
of the physical processes that govern the 
relationship between the atmosphere and surface 
variables and incorporation of this knowledge in 
the downscaling methodology. Other possible 
areas may include: the temporal and spatial scales 
at which these relationships remain stable, 
comparison of differences in model performance 
among various empirical downscaling 
approaches, development of better predictor 
selection criteria and, more flexible descriptions 
of the relationships between the atmosphere and 
the surface environment, in both space and time.  

5. APPLICATION OF A NON-
PARAMETRIC MODEL 

Results of a preliminary application of a non-
parametric downscaling model are presented here. 
In order to test the utility of the identified 
predictors in downscaling the rainfall occurrence 
state, the different model configurations 
(predictor variables) are evaluated by 
downscaling daily rainfall occurrence at multiple 
locations in a leave-one-out cross validation 
mode. This approach allows the identified 
predictors to be tested on data points not used in 
model development, hence allowing one to assess 
the performance of these predictors for 
downscaling. The model used in the study is 
based on the nearest neighbour approach (Lall and 



Sharma, 1996; Rajagopalan and Lall, 1999; 
Buishand and Brandsma, 2001, Harrold at el., 
2002) and is designed to provide a good 
representation of both the rainfall occurrence 
process and the seasonal variation of rainfall 
within a year. The temporal variability is achieved 
through the use of predictor conditioning 
variables while the seasonality is represented 
using a moving window approach. As re-sampling 
is done jointly at all stations, spatial correlations 
among the stations are automatically preserved. 
The model is non-parametric, i.e., assumptions 
about the probability distribution and the nature of 
dependence between variables are minimised.  

The model is applied using 26 years of historical 
daily rainfall and temperature data from ten 
stations located around Sydney, Australia. None 
of these stations contain more than 1 percent of 
missing records. These missing values are filled 
in using the available records of adjacent stations. 
Figure 1 shows the location of these stations 
while Table 1 provides the latitude, longitude, 
elevation above MSL, average annual rainfall and 
average maximum and minimum temperature 
details at these stations.  

 
Figure 1: Location of stations used in the study. 

The set of predictors used in our model includes 
combinations of area average rainfall occurrence 
and area average temperature range for the region. 
The utility of the selected predictors is evaluated 
by downscaling the daily rainfall occurrence in a 
leave-one-out cross validation mode at all stations 
and comparing the results with the null case i.e. 
downscaling the rainfall occurrence without any 
predictor. 

5.1. The model 

Formation of a stochastic downscaling model for 
a time series {x1, x2,..., xt,...} involves 
specification of the conditional probability 
distribution f(xt|zt), where zt is a vector of 
predictors formed from the large-scale predictor 
variables, which are indicative of the present state 

of xt. The prediction of xt can be made using the 
conditional probability distribution f(xt|zt), which 
is defined as: 

f(xt|zt) = 
∫ ttt

tt

dxzxf
zxf
),(
),(

               (1)  

Resampling models using nearest neighbour 
methods have been frequently used for estimation 
of f(xt| ). Lall and Sharma (1996) proposed that 
the conditional distribution in (1) can be 
represented as a function of the k-nearest 
neighbours of the conditioning vector z

tz

t, with 
more probability p(i) being assigned to the 
neighbours that lie closer to the conditioning 
vector, and less probability to the more distant 
neighbours:  
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Where p(i) is the probability that the ith nearest 
neighbour will be resampled, and k is the number 
of neighbours considered.  
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Figure 2: Frequency of occurrence of rainfall 
states in different temperature classes. 

In our application, xt is a vector of daily rainfall 
occurrence at multiple stations and zt is a vector 
formed from the combinations of the area-average 
temperature and rainfall occurrence on the current 
and the previous days. We analysed the sensitivity 
of the area-average values of minimum 
temperature, maximum temperature, average 
temperature and temperature range of the 
previous and the current days’ to the current day’s 
rainfall occurrence, and found the temperature 
range of the current day to be a good predictor of 
the rainfall state (Figure 2 and Table 2). We also 
considered the division of the study area into two 
homogeneous regions based on the elevation of 
the stations (Figure 1). The number of 
combinations (models) considered in the predictor 
set formulation is presented in Table 3.  



The moving window approach provides an 
attractive alternative for modelling seasonality 
(Rajagopalan et al., 1996; Sharma and Lall, 1999, 
Harrold et al., 2002). A window of specified 
length is centred at the current calendar day, and 
all days falling within the moving window (from 
all historical years) form the local subset of data 
used in the model for the current day. These 
windows naturally represent the seasonal 
variability present in the historical record. 

After analysing the sensitivity of the model to 
different choices of width of moving window l, a 
value of l = 15 days was chosen for use in our 
application. We obtained k, the number of nearest 
neighbors, by trialling a range of possible values, 
and finally selecting the value of k as ten for all 
models. The null case in our model corresponds to 
zt being a null (empty) vector. 

Table 1: Name, location, elevation and other details of the stations used in the study. 

Station name Code Latitude 
(S) 

Longitude 
(E) 

Elevation 
(m) 

Average Annual
Rainfall (mm) 

 Average annual
daily maximum
temperature (˚C) 

 
 
Average annual 
daily minimum 
temperature (˚C) 

Jerrys plains (Jerrys Plains P.O.) 61086 -32.4983 150.9083 90 640.2 25.2 10.5 
Liverpool (Whitlan Centre) 67035 -33.9272 150.9128 20 869.5 23.2 11.6 
Mudgee Post Office 62021 -32.5955 149.5956 454 675.7 23.0 8.3 
Newcastle (Nobbys Signal Station) 61055 -32.92 151.7978 33 1141.9 21.8 14.2 
Nowra Ran Air Station 68076 -34.9506 150.5358 109 1134.7 21.3 11.3 
Orange (Orange Airport) 63231 -33.3828 149.1217 948 922.2 17.4 6.1 
Scone (Scone ScS) 61089 -32.0632 150.9272 216 654.8 23.9 11.0 
Sydney Regional Office 66062 -33.8522 151.2039 42 1221.9 21.6 13.7 
Bathurst Agri. Research Station 63005 -33.4289 149.5559 713 634.0 19.7 6.8 
Lithgow Composite 63224 -33.4922 150.1483 950 869.5 18.2 6.3 

Table 2.  Overall MSE and LR values for different cases of the area-average values of temperature.  

Sr.  No. Description Number of variables in 
Zt vector MSE LR 

1 Maximum temperature of the previous day  1 0.214 1.049 
2 Minimum temperature of the previous day 1 0.204 1.095 
3 Maximum and minimum temperatures of the previous day  2 0.185 1.172 
4 Previous day temperature range 1 0.190 1.160 
5 Previous day average of  maximum and minimum temperature  1 0.221 1.02 
6 Maximum temperature of the current day  1 0.198 1.119 
7 Minimum temperature of the current day 1 0.201 1.114 
8 Maximum and minimum temperatures of the current day  2 0.164 1.268 
9 Current day temperature range 1 0.164 1.272 
10 Current day average of  maximum and minimum temperature  1 0.218 1.031 
11 Temperature range of the current and the previous days  2 0.157 1.300 

Table 3.  Overall MSE and LR values for different models.  

Model 
No. 

Description Number of variables 
in Zt vector MSE LR 

1 Null case 0 0.193 1.000 
2 Rainfall state of the previous day 1 0.177 1.112 
3 Rainfall state of the current day 1 0.085 1.590 
4 Rainfall state of the current and the previous days 2 0.091 1.591 
5 Rainfall state of the current day and temperature range of the previous day  2 0.093 1.592 
6 Rainfall state and temperature range of the current day 2 0.093 1.594 
7 Temperature range of the current day and rainfall state of the previous day  2 0.158 1.294 
8 Temperature range of the current day of region 1 and region 2  2 0.155 1.316 
9 Rainfall state of the current day of region 1 and region 2 2 0.059 1.731 
10 Rainfall state and the temperature range of the current day of region 1 and region 2 4 0.064 1.713 
11 Rainfall state of the current day and temperature range of the current and previous days  3 0.154 1.297 

Downscaling of rainfall occurrence proceeds by 
defining the vector zi for every day i in the 
seasonal subset of the historical record formed by 
the moving window centred at the Julian day 

corresponding to t, which is the current day in the 
predicted sequence. The k nearest neighbours of zt 
have the k minimum Euclidean distances between 



zi and zt. These Euclidean distances Ei are 
calculated as: 

Ei = ∑
=

m

j
j,tj,i )-z(z

1

2                      (3) 

where m is the number of variables included in 
the z vector (Table 2).  

The downscaled rainfall occurrence is 
given by: 

)|( tt zxp

p(i)xzxp k

i itt ∑=
×=

1
)(              (4) 

Since the occurrence data is binary, with 0 
representing a dry day and 1 representing a wet 
day, is the probability of occurrence of 
a wet day. 

)|( tt zxp

The performance of a particular model is 
evaluated by comparing the model predicted 
rainfall occurrence of each day to the historical 
rainfall state, using the following two criteria: 

(i) Mean square error (MSE): This is a measure of 
deviation of predicted rainfall state from the 
observed state and is calculated as:  

2
,1 , ))((1

iil
N

i ill zxpx
N

MSE ∑=
−= (5) 

where N is the number of days of records 
considered, and MSEl is average MSE at a station 
(l). xl,i is observed and p(xl,i/zi) is the expected or 
average predicted rainfall state on the ith day at the 
lth station. The average of MSEl for all stations is 
reported as the overall MSE for a particular 
model. 

(ii) Likelihood ratio (LR): This ratio is given by: 
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where LRl is the likelihood ratio for station l, and 
p(xl,i) is the marginal probability of the observed 
rainfall occurrence for day i at station l, computed 
using the moving window. For null case, this ratio 
is equal to one while for other cases we expect it 
to be greater than one. The average of LRl for all 
stations is reported as the overall LR for a 
particular model.  

Table 3 provides the overall MSE and LR values 
for different models. These results suggest that 
the inclusion of the area-average rainfall state of 
the current day as a large-scale predictor provides 
good results. Also, the division of the study area 
on the basis of elevation of the stations further 
improves the downscaled results. It should be 

noted that the above results are ascertained using 
a leave-one-out cross-validation formulation; 
hence one should expect similar results when the 
model is applied on new data. 

6. CONCLUSIONS 

This paper is a part of an ongoing study to 
compare and develop statistical downscaling 
methods for downscaling of rainfall at 
hydrologically relevant spatial scales. A review of 
recent literature highlights the need for 
development of more general and flexible 
circulation classification schemes and 
investigating the differences in model 
performances among various empirical 
downscaling approaches. There is little systematic 
work that has explicitly evaluated the relevant 
skill of different atmospheric predictors. 

Results of a preliminary application of a non-
parametric downscaling model for evaluating a 
configuration of predictor variables by 
downscaling the daily rainfall occurrence (in a 
leave-one-out cross validation mode) at multiple 
stations indicate the temperature range to be a 
good predictor in comparison to the average 
temperature and the maximum and minimum 
temperature of a day. The area-average rainfall 
state of the current day considered as a large-scale 
predictor provides good results and the division of 
the study area into the sub-areas on the basis of 
elevation further improves the results. 

We are also working on NHMM based 
downscaling approach, results of which would 
form a basis of comparison of non-parametric and 
parametric techniques, and would help in 
developing better relationships between 
atmosphere and the surface environment. 
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