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Abstract:

River flow forecasts are required to provide basic information for reservoir management in a

multipurpose water system optimization framework. An accurate prediction of {low rates in tributary streams
is crucial to optimize the management of water resources considering extended time horizons. In the paper
different NN approaches will be analyzed to model the rainfall-runoff process when different time step
durations have to be considered in reservoir management. Alternative neural models of the rainfall-runoff
process are presented and discussed. Some numerical results are provided for runoff prediction in the Tirso
basin at the 8.Chiara section in Sardinia (Italy), using combinations of area and point-based measurements.
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1. INTRODUCTION

Artificial Newural Networks (ANN) are widely
accepted as a potentially useful way of modeling
complex non-linear systems with a large amount of
data, at times noisy. They are particutarly useful in
situations where the underlying physical process
relationships are not fully understood, modeling
complex problems both as substitutes for more
conventional mathematical and statistical models,
and in association with them.

In recent years ANN have increasingly been used
for the prediction and forecasting of variables
involved in hydrologic processes [Maier and
Dandy, 2000}. Though the general tendency among
users is 1o throw a problem blindly at an ANN in
the hope that it will formulate an acceptable
solution [Flood and Kartam, 1924}, nevertheless it
is essential to investigate different aspects of the
ANN approach in order to improve prediction
accuracy of the hydrologic processes, such as
network architecture, modeling process, and
efficiency estimation for model validation.

In this paper the ANN approach wilf be utilized to
model the rainfall-runoff processes. The aim of this
paper is to evaluate surface water resources dealing
with water management problems when only
information about basic input variables, i.e. rainfall
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and temperature, are available. Therefore, in the
first phase of the investigation, the time step has
been established in monthly periods. Further
investigations have been made considering a daily
time step.

Since the actual rainfall over an area is a
termination stage of a number of different
processes occwting on  different scales, the
derivation of area estimations over the basin from
point observations remains one of the most
difficult issues in hydrology [Berndtsson and
Niemczynowicz, 1988]. The space and time scale
of precipitation (as well as other hydrological
variables} is related to  the resolution of
measurements and extensions of watersheds as well
as to the type of underlying general hydrologic
problem.

Using the monthly extended time-step, it is
possible to disregard the rainfall kinematics of the
single storm event, while the more classical
problem of mean area precipitation estimation on
an extended time period is being considered. Using
the daily tdme step, the distances between point
rainfail gauges and the runcil section have been
considered to weight point rainfall in the ANN
modei.



The proposed ANN methodology can be used
mainly o generate an extended hyvdrologic
framework for water resource system planning and
management problems referred o an extended time
hortzon. It is clear that using the monthly time step,
the reconstructed hydrologic behavior of the runoff
will be suitable for water resource studies where
storage-yield sequences are frequently related to
monthly periods. The daily time step could be
adequate to deal with other proposals such as those
related to flood flow problems only for large
basins,
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NEURAL NETWORKS FOR RAINFALL-
RUNOHFF PROCESSES

In the paper, traditional feedforward, multilayer
perceptron (MLP) networks are used. Even though
in recent works [Cannas et al., 2000; 2001}
aiterrative architectures, such as locally recurrent
neural networks (LRNN), have been proposed for
rainfall-runoff processes, the results showed no
significant improvement compared to the MLP
approach, probably dues to the limited time-
dependency of the process. Thus, the considered
ANN refers to the MLP even though different
network architectures have been used.

In a previous paper [Lomrai and Sechi, 1995] the
rainfall-runoff process was modeled using MLP for
the Araxisi watershed in Sardinia (Italy). The
examined ANN to model the hydrologic process
were built considering mean area values of rainfail
and temperature over the basin, and also taking
into account point rainfall and temperature values.
The authors showed that ANN gained in efficiency
when point data inputs were congidered. Moreover,
the results obtained with ANN were significantly
better than those reached using the conceptual
maodel to simulate the rainfall-runcff process and
multivariate AR models. In this paper we
considered the Tirso basin at the S. Chiara section
in Sardinia (Italy), which is very close to the
Araxist basin. This is a particularly interesting
basin on account of its geographic configuration
and water resource management. In fact a dam was
built in this section in 1924 providing water
rescurces for central-western Sardinia. Recently,
the new “Cantoniera Tirso” dam was built a few
kilometres down the river, creating a reservair of a
storage volume of 780 Mm®. The basin area is
2,082.01 kmz, and 1is characterised by the
availability of detailed daia from several rainfall
gauges. In this study we consider the data from 61
rainfall stations and 2 temperature stations.

The data of the training and validation sets were
standardized using the following expression:
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where min and max are the minimum and the
maximum values of the training data. The constant
eps was introduced to avoid flat regions in the
sigmoidal function and it was set equal to 0.1
Considering Yyumuiwesy 85 the model output in the
i period and  Yiobsereq) the Observed data, the

usual expression of

2
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is used to find the best ANN configuration ¢o fit
the observed data.

Nevertheless, the F index cannot easily be used to
obtain a fitness criterion to be used tc compars
both mode] performances for the same watershed
in different time stages and the reliability of modef
forecasting in different watersheds.

Moreover, in dealing with hydrological regimes
with marked seasonal variations, model efficiency
indexes were used following the definition given in
[Losrai and Sechi, 1995] and [Cannas et al., 2000].

In such a climate, efficiency should be defined
taking into account the intrinsic variation of the
estimated values from the general climate
periodicity.

Considering 4=/, ... D periods and Ny values in
the d” period, we can define the square deviations
of the observed runoff data within the period:

= .2
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where v, is the mean of the observed values in

the d” period.
Seasonal efficiency Rp can be written as:
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As Ey are known values from the training series,

the criterion of maximizing Rp is equivalent to

minimizing the residual square error £ between

observed and generated data.

Comparisons between models have been made
using the efficiency expressions (4) to verify
performances of ANN.

As mentioned above, the experiments have been
divided considering point and averaged variables.
Most procedures to evaluate the mean area
precipitation P, over the i-time period can be



expressed as a lincar combination of the
observations P-’J at the gauges j=1,a.
Pi’ = Ej:ljz aj' ‘Pi,j (5)

where the station weights « i j=Ln, are non-

negative, constantly varying the i-period, and sum
tc 1. In this application we refer to mean area
rainfall evaluations as obtained in [Cao et al.,1983]
modifying a procedure originally exposed by
{Akin, 1971]. The wmethod requires the
determination of a reference triangle network of
the gauge stations in the basin with vertices in the
measurement locations. Using this approach, the
baricentrical value P;; of the k-element rainfall
triangle plane takes place in (5) of the vertex Py;
observed value; the areas of the triangle reference
network are the weights a; in (5). Moreover, using
the daily time step, we also compute a weighted
precipitation for the current day using the inverse-
distance method to evaluate agin (5).

3. APPLICATIONS AND RESULTS

Considering monthly time steps, preliminary
experiments have shown that a best fit to the
observed data may be obteined by introducing
previous month runoff nodes in the input layer in
order to represent the flows of the previous
periods. This can effectively reproduce the
preceding phase of the hydrographs, which is
strongly related to groundwater storage and deep
storage changes in the basin after rainy periods
many time steps earlier. For the S.Chiara basin, it
is shown that there is no special advantage in
taking into account more than the data of six
previous months.

As described in [Lorrai and Sechi, [995],
evapotranspiration losses in the basin can be
modeled  easily, considering the observed
temperature vaiues. As a matter of fact, even if
approaches based on mass-transfer and energy
balance methods are more detailed in estimating
evapotranspiration, for the extended period and
practical purpose when not all the data are
available, empirical temperature-based equations,
such as the Blaney-Criddle and Thornthwaite
equations, can be used [Bras, 1990]. As losses in
previous months are globally represented by the
behavior of rainfall and runoff, the model will
incorporate only the present month temperature,

In order to model the rainfall-runoff process
related to Mediterranean climate watersheds, it will
be imporiant to lake into account a month
dependent general climate variable. This variable
could easily be associated with analytic periodic
functions with periods equal to one vear, a5 in
{Abraharth, 1999]). Giving better results, in this
work we refer to different cyclic independent

variables: a variable equal to the standardized
monthly averaged runofl values, and the sine and
cosine component of the annual monthly count.

Sixty-mine years of monthly flow data for the
S.Chiara basin are available, ie. from 1924 o
1992 for a total of 828 data values. The data set
was split into two parts, the first 49 vears (388
monthly values} were used as a training set, while
the remaining 20 years (240 monthly values) were
used as a validation set. The analyses were carried
out splitting the 20 years of the validation into 10
vears of cross-validation and 10 years of final
validation.

In modeling the monthly rainfall-runcff process,
we refer to case A, and the following alternatives
have been assessed:

1. A data preprocessor has been used to calculate
the mean area rainfall for the entire basin. As
described below, the experiments have been
carried out considering oniy rainfall in the first
case, and adding respectively  runoff,
temperature, and climate information in the
input layer.

Point rainfall values have been used, as gains
in efficiency have been pointed out in previous
studies. These cases refer 1o the inclusion of
raw point rainfall, which was observed in the
MLP input layer in the present and in previous
months.

As can be understood sasily, strong inter-
correlations characterize rainfall values in the
same period measured at different stations in
the basin. The principal components have been
preprocessed  to  reduce  the number of
independent rainfali variables. The component
numbers will be different as the number of
previous months varies. The accepted variance
error has been fixed at 2%.

An MLP with a lumped structure has been
considered to obtain an averaged rainfall value
at the same #-perfod. Point rainfall nodes in the
input layer have been connected oniy to the -
node in the first hidden layer corresponding o
the same observed fime period. The network
contains two hidden lavers, and the node
number in each layer equals the period
considered.

[¥%]

The four model alternatives were split into the
foliowing subclasses, according o the types of
inputs used:

a) only rainfall data;
by rainfall and rusoff data in previous periods;
¢} rainfall, runoff, and climate cyclic variable of

the present month, defined as standardized
monthly averaged runoff;



and

d)

rainfali, runoff, climaie variable,
temperature of the present month.

in particular, cases Aly refer to the first class of
MLP models using an average data preprocessor,
and the results for each subclass are given in Table
1.

It can be seen from the Table that, as expected, we
obtain better results when we consider the runoff of
the previous months and the climate monthly
cycling variable,

Table . MLP results for the rainfall-runcff
process using mean area rainfall

Model MLP RD R}) RD
layers (20 vyears) (1% 10years) (210 vears}
Ata T.7:] 0.83 0.78 0.80
Alb 1371 0.82 0.76 0.86
Ale 1471 0.86 0.84 0.88
Ald 16:7:1 0.85 (.83 (.87

At the same time, temperature does not have a
significant role in the model This can be related to
the fact that the model can understand the losses
from the rainfall-runoff behavior of the previous
months and from the present value of the climate
variable.

The second class of MLP models, considering
therefore limited to subclasses b and ¢. The results
are shown in the Table 2.

Table 2. MLP results for the rainfall-runoff

process using point rainfall

Model  MLP Bp Rp =
layers (20 years)  (1*10vrs)  €2"19yrs)

AZb 24731 0.38 0.40 0.37

AZc  248:3:1 0.41 0.43 0.39

As pointed out in the Table, because of the large
number of distributed inputs, and consequently the
reduced ratio between learning data and number of
weights, a general estimate cannot be obtained, not
even by reducing the number of hidden nodes.

It seems evident therefore that we need to use pre-
processors  that should aliow to reduce or
appropriately organise information to the network.
Two different strategies can be used. One is to pre-
process the input data to reduce its dimensionality.
The second is to feave the data compression task o
the network itself

As previously stated, class A3 of the MLP natwork
refers to a Principal Component Analysis (PCA)
preprocessor, while class Ad refers to an input
layer organized with selected connections to a
hidden layer with a lumped structure. The latter
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model needs two hidden layers. The results are
presented in the following table:

Table 3. MLP results for the rainfall-runoff
process using the PCA preprocessor and lumped
structured ANN:

Model MILP Rop Rp Rp
layers {20 years} (1% 10vears)  (2°10 years)

A3 T 0.46 0.58 0.32

Adbp 2471321 (.55 0.59 0.51

From the above experiments it seems clear that the
mean area rainfall preprocessors give the best
results. Indeed they reach a better generalization of
the process due o the smaller number of weights in
the meodel. Furthermore they manage the
information on the topology of the measurement
system, which other approaches do not consider.
Figure | shows the observed and generated runoff
using model Alc.

Standardized runoff
O’B_ o y ubsoryid
T R y simulated
0,57

1

1981 1985
year

1917 14936 1593

Figure 1. The standardized observed and
generated runoff (Model Alc).

The Alc model was used to generate a synthetic
runoff series using feedback connections between
runoff generations in lagged periods. Experiments
have been carried out using a recurrent MLP
network architecture. In the testing phase no
historical information on runoff was used during
the process prediction. To characterize this
procedure, we refer to model subclass e as runoff
generated by the network is used as an input in the
ANN. The resuits are shown in Table 4.

Table 4. Results for runoff generation using a
recurrent MLP network:

Model  MLP Ro Ro Rp
layers (20 yearsy  (1¥10yrs)  (2™10yrs)
Ale  8:4:1 0.81 0.81 (182
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Figure 2. Lumped MLP structure.

It can be noted from the above tables that the
monthly model performances slightly deteriorate
on removing some input information. In particular
when observed runoff information is removed, the
performance variations are negligible. These
results suggest that this approach could provide a
useful tool for synthetic stream-flow series
generation, which is particularly helpful when the
historical series are incomplete, as is often the case
in Sardinian basins. The results on series generated
by models Ale show that this model can be
recommended for long term  time  series
generations.

Considering daily time steps, ten years of daily
flow data have been examined. The data set was
split into two parts: the first 4 years were used for
validation, the last 6 years were used for training.

In modeling the daily rainfali-runoff process we
refer to case B, and the same 4 alternatives {codes
from 1 to 4) and 6 subclasses {codes from a to d)
previously considered for the monthly models.
Moreover, in case Bl to mode! the daily time
steps, we compute the weighted precipitation for
the current day using the inverse-distance method.

Distances have been evaluated between rainfall
gauges and the runoff measurement station.

After a few preliminary experiments to define the
number of previous periods in alternatives and
subclasses, the considered potential ANN model
inputs include rainfali from the previous 60 days
and runoff from the previcus 3 days:

P, present day rainfall;

P, cumulated rainfall from {1} to(z-3)
previous days;

P3;: cumulated rainfall from {-4) to (115}
previous days;

Py cumulated rainfall from (z-76} to (+-30)
previous days;

Ps curnuiated rainfall from (+31) to (¢-60)
previous days;

In the following table we summarize the most
significant results obtained using the preprocessor
for mean area runoff estimation.

Table 5. MLP results for the rainfall-runoff
process using mean area rainfall (daily model).

Modet  MLP Rp Rp
layers {10years) {4 years testing)
Bla 3551 0.53 0.48
Blb 881 0.71 0.51
Blc §:9:1 0.77 0.78

It can be seen that significantly better results can
be obtained using information about rainfall and
runoff in previous time steps as well as the climate
cyclic variable.

As pointed out for the monthly models, because of
the large number of distributed inputs, and
consequently the reduced ratio between learning
data and number of weights, good results cannot be
obtained using the point rainfall values, not even if
the MLP network referring to a Principal
Compoenent Analysis preprocessor is reduced.
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Far more interesting are the results obtained using
models B4 and referring to an input layer
organized with selected connections to hidden
layers with a lumped structure. Model Bde needs
three hidden layers and has been schematized in
Figure 2.

The results obtained with the lumped structure are
summarized in Table 6.

Table 6 MLP resulis for the rainfall-runoff
process using the lumped structured ANN,

Model MLP layers Rp Rp
(1Gyears) (4 years testing}

B4b 371381 (073 0.67

Bdc 3&Laeld 0.73 0.79

As previously pointed out, the MLP with a lumped
structure gives a balanced average of rainfall at the
cugrent -day-period.

4. CONCLUSIONS

The neural models applied to the rainfall-runoff
transformation problem provide a useful tool for
the prediction of runoff fo generate an extended
hydrologic framework for water resource system
planning and management problems referred to
monthly data. In this case, it has been shown in the
paper that evern when only information about basic
input variables is available, the performance of
ANN deteriorates only slightly. Referring to daily
data, preliminary results show the necessity to
utilize other alternative preprocessors than simple
mean-area evaluation to treat rainfall data
adequately. Results obtained wsing lumped
structured ANN for daily data seem promising in
this direction. When shorter time-steps have to be
managed in order to face flood forecast in extended
watersheds, more sophisticated preprocessing
methods and network structures have to be
developed in order to reduce the dimensions of the
data. Nevertheless, ANN can be used successfully
in many practical engineering applications where
the main aim would be to make accurate
hydrologic  predictions, in cases where a
physically-based description of the rainfall-runoff
process is not possibie.
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