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Abstract The Degree Constrained Minimum Spamiing Tree Problem is concerned with finding, in a given
edge weighted graph G (all weights are non-negative), the minimum weight spanning tree 7 satisfying
specified degree restrictions on the vertices. This problem arises naturally in communication networks where
the degree of a vertex represents the number of line interfaces available at a terminal (center). Since, apart
from some trivial cases, the problem is computationally difficult (NP-complete), a number of heuristics have

been proposed. In this paper we pPropose two new

heuristics: one based on the method of Tabu search and

other based on a penalty function approach, Our heuristics are implemented and extensively tested on
simulated problems. The computational results support cur methods.
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1. INTRODUCTION

Graph theoretic concepts have proven useful in
studying problems arising in network design and
analysis. Here we consider a graph G = (V,£) to be
a collection of vertices V representing the
nodes/centers in the network together with 2 set £
of edges representing the network
connections/links. Our graphs are finite, undirected
and have no multiple edges. Thus letting V =
11,2,....n} we can identify the edges of G as
unordered pairs (i,/). The weight (cost or distance)
of edge (i) is denoted by ¢y The ¢s are
assumed to be non negative.

Given a weighted graph G, a fundamental problem
in netwaork design is'to select a subset of edges so
the resulting network is connected and the total
weight of the edges selected is as small as possible.
This problem is referred to as the minimam
spanning tree (MST) problem. The MST
problem is easily determined by a greedy
algorithm such as Kruskal’s [1956] and Prim’s
[1957].

Here we consider the problem of finding a MST
satisfying a degree constraint on each vertex. More
precisely, the Degree Constrained Minimum
Spanning Tree (DCMST) preblem is to find a

minimum spanning tree 7 of G such that the
degree of vertex / in Tis at most b, , 1< 7 <n.

Garey and Johnson [1979] showed that, apait from
some trivial cases, the DCMST problem is
computationally  difficult  (NP-complete) by
reducing it to an equivalent symmetric Traveiing
Saiesman Problem (TSP). Notice that if the degree
bound b, =2, ¥ i € ¥, the problem reduces to a
TSP, Thus, it is unlikely a polynomiai bounded
algorithm exists for solving general DCMST
problems.

The DCMST problem has been considered by a
number of authors and both heuristic and exact
methods have been proposed. In this paper we
present two new heuristics; one based on the
method of Tabu search and other based on a
penalty function approach. The Tabu search
method has previously not been applied to this
problem. The paper is organized as follows:
Section 2 gives an integer programming
formulation of the probiem; Section 3 briefly
reviews some of the solution methods available in
the literature; Section 4 discusses our new
heuristics;  and  Section 5 presents  the
computational results based on 2400 random table
problems having 10 to 500 nodes.
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I FORMULATION

From the modeling point of view, the DCMST
problem can be formulated as a Mixed Integer
Linear Programming as follows:
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Constraint {2} ensures that n-1 edges are selected.
Constraint (3) eliminates cycles, and constraint (4)
ensures that the degree restrictions are met. Note
thatx, = 1, ifedge (/) is selected and 0, otherwise.

Caccetta and Hill [2001] modified the above
formulation by replacing (2) and (4) with:

Tx,~d; =0 igign (6)
Jebt o
n

d; =2{(n-1) {N
i=l
l<d, <b,, , Igign (8

This formulation has » additional variables {(d's)
hut n fewer constraints, It was noted in Caccetta
and Hill [2001] that this formulation was better
computationally in a branch aand cut procedure.

3. AVAILABLE ALGORITHMS

There are many exact and heuristics algorithms for
DCMST available in the literature.

Exact methods for the DCMST problem have been
considered by a number of authors. The migthods
developed include: Langrangean relaxation by
Gavish [1982] and Volgenant [1989]; branch and
bound by Narula and Ho [1980], Savelsbergh and
Volgenant [1985], and Voigenant [1989]; and the
branch and cut method by Caccetta and Hiil
[2001]. The best results reported in literature are
those of Caccetta and Hill [2001].

For heuristics, many variations of Prim’s and
Kruskal's algorithms have been developed, for

example, by Narula and Ho [1980] and Caccetta et
al [2000]. The idea is to maintain feasibility of the
degree during the spanning tree construction.
Caccetta et al. [2000] implemented and tested
algorithms on problems with up to 500 vertices.

A Genetic Algorithm was proposed by Zhou and
Gen [1997). They use the Prufer [1918] number to
uniguely coding the spanning tree. The use of
Prufer number has advantages in that any verex
with degree » will appear exactly 71 times in the
Prufer aumber. In the method they adopt uniform
crossover and periurbation mutation operators as
the genetic operators, and implemented the
algorithm on problems with up to 50 vertices.

Simulated  Annealing  was  proposed by
Krishnamoorthy et al. [ 1998, 2000]. Further, they
also proposed a hybrid method called Problem
Space Search, which is a blend of the Genetic
Algarithm approach and a simple constructive
search method. The algorithms were implemented
on problems with 30, 50, 70 and 100 vertices.

Boidon et al. [1996] and Deo and Kumar [1997]
proposed a method based on iterative refinement
procedure called lterative Refinement. In this
method, the construction starts with finding a MST
and then the edges incident to a degree violated
vertex are penalized, except the smallest one, to
maintain connectivity. With the new weighted
edges, the process of calculating a MST s
repeated, and it continues until a spanning tree
without degree violation is found. They
implemented this method using paraliel computing
on a computer with 8192 processors. This can be
done because the nature of the algorithm/method,
where every vertex can be assigned a processor
and the computational process of penalizing edges
is independent {non sequential}. They solved
problems with up to 5934 vertices.

4. NEW APPROACHES FOR DCMST

For computationally difficuit problems heuristics
are often a good alternative. We propose two new
heuristics; one is based on Tabu Search method
and on a penalty approach.

4.1 Tabu Search Approach

Tabu search is a meta-heuristic that guides a local
heuristic search procedure to explore the solution
space bevond local optimality. According to
Osman and Laporte [1996] a meta-heuristic is
defined as an iterative generation process which
cuides a subordinate heuristic by combining
intelligently different concepts for exploring and
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exploiting the search space. Leamning strategies are
used to structure information in order to find
efficiently near-optimal solutions. Tabu search
methods are now widely used in many problems,
especially combinatorial optimization problems. In
order to improve the efficiency of the exploration
process, one needs to keep track not only local
information (like current objective function value)
but also some information related to the
exploration process. This systematic use of
memory is an essential feature of Tabu search.

In Tabu Search, an important distinction arises by
differentiating between shori-term memory and
fong-terms memory. The foundations of Tabu
Search lie on these two types of memory. Each

type of memory has its own special strategies.

Short-term memory keeps track of the most recent
solution attributes that have changed during the
past. This memory is referred to as recency-based
memory in Glover and Laguna [1997] It is
exploited by assigning a tabu active designation to
selected attributes occwrring in solutions recently
visited, and then the solutions containing tabu
active elements become rabu. However, those
solutions only hold tabu status or tabu attributes
temporarily, not forever. The Tabu tenure is
defined as the duration an attribute remains tabu
active {usually measured by the number of
iterations). Tabu tenure can vary for different types
or combinations of atiributes and can alse vary
over different time or stages of the search,

CUne term that accompanies the short-term memory
is Aspiration Criteria.  The tabu status of a
sofution is not absolute, but can be overruled if
gertain conditions are met, and this is expressed in
the form of aspiration criteria.

In some applications, the short-term memory
components are sufficient to produce good quality
solutions, However, in general, Tabu Search
becomes stronger by including longer-term
memory and its associated strategy.

One fundamental term in long-term memory is
Jrequency-based memory. This memory works by
introducing penalties and inducements determined
by the relative span of time that atiributes have
belonged to solutions visited by the search,
allowing for regional differentiation.

The transition frequencies keep track of how often
the attributes change while residence frequencies
keep track of relative durations attributes occur in
the solutions generated. /mtensification strategy i3
one other important component in long-term
memory. This strategy is based on modifying
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choice rules to encourage move combinations and
solution features  historically found  good.
Intensification strategy may also initiate a return to
attractive regions to search them more thoroughly.

Tabu search diversification strafegy as its name
suggests, is designed to drive the search into the
new regions. This strategy is often based on
modifying choice rules to bring attributes into the
solutions infrequently used or altemnatively, it may
introduce such attributes by partially or fully
vestarting the solution process.

Using the procedure defined by Hertz et al. {1997]
the essentials of Tabu search procedure can be
stated as follows. We use the notation that §,
denotes the set of available solutions at iteration &,
i"is always the best available solution and (i k)
is the “neighborhood” of sclution / at iteration k.

Initialization: Set & =0 and initial solution =%,

Step {: Let current solution be /. Set A=+
and generate a subsat § of solutions in
Mk} such that either one of the tabu
conditions is violated or at least one of
the aspiration criteria holds.

Step 2: Choose the best solution j with respect
to the objective value /. j is obtained
from { by selecting the best move {the
operation that changes one solution to
another). Set =/

Step 3: Iffriy<ffi’), thenseti =i

Step 4 Update the tabu and aspiration
conditions.

Step 5. If a stopping condition is met, then
stop. Else go to step 2.

In our algorithm, we start our heuristic by finding
the MST. This gives us a lower bound (LB). The
modified Kruskal algorithm provides us with a
Degree Constrained Spanaing Tree (DCST), which
provides an upper bound (UB). The heuristic starts
from the upper bound, which is feasible and work
towards optimality. The moves are the set of edges
incident with the leaves {vertices of degree 1) in
the G\T. Tabu tenure is set to be 0.1 », where # is
the number of vertices in the graph. The maximum
number of iterations is 0.2x. The stopping criteria
are maximum number of iterations and the
tolerance, where tolerance = 10 % of gap and gap
=B -~ LB. Note UB is revised as better feasible
solutions are obtained.

The aspiration criteria are applied if a degree
violation is detected. All possible edge exchanges
among the edges of T incident to the violated
vertex 7 and the edges of G not in T involving the
neighbor of /, are examined. If searching doesn’t
vield any better solution, we record the current



best soiution, put the currently used moves into
tabu status and restart. The main idea of the
algorithm is as follows:

begia

te0

initialize: Graph, Tabu_move, Tabu_ Status

find MST, DCST

control T« DCST

while (not termination condition)
do
choose the best move
perform edge exchange
i { new solution feasible)
compare the new solution with contrel T
adjust the Tabu-move and tabu_status
Fe—i+1
else
apply the aspiration criteria
compare the new solution with control T
adjust the Tabu-move and tabu_status
fe—t+1
endif
end
end

The Tabu Search method has not previously been
applied to the DCMST problem.

4.2. Modified Penalty Algorithm

Our Modifled Penalty (MP) algorithm is a slight
variation of the Iterative Refinement (IR} method
developed by Boldon et al. [1996] and Deo and
Kumar [1997]. The IR method utilizes a special
function called “Blacklisting function” to penalize
the edges incident to the vertices violating the
degree restriction. The penalty for edge (i) with d
> b, and weight wy is determined as:

W g
i min
kz _—_""J em‘dx B
emnx wemin

where 0 k<1, /=1 (ifd, € ) or2(ifd > b
and e, and ey, are respectively the maximum
and minimum edge weights in the current tree.
They implemented the heuristics using paralle]
computing on massively paraliel SIMD machine,
MasPar MP-1 with 8192 processors.

The construction of the algorithms starts by
finding & minimum spanning tree of the given
graph. Then, the requirement (the degree
restriction constraint} is used to increase the
weights of selected edges in order that the next iree
constructed wiil have fewer violations. After that,
the minimum spanning tree of that graph is

computed again using the edges that already have
altered weights. This procedure is repeated until
we get a spanning tree without degree violations.

The use of a ‘blacklisting function” in this method
is similar in spirit to the Tabu search. The two
methods differ only in the search direction. Tabu
search disallows search towards certain solutions
in the combinatorial search space while in the
Iterative Refinement, the blackiisting function
guides the search by discouraging certain search
directions.

For the sake of a quality comparison, we
developed a code for the ierative Refinement
methoed. Since in the Herative Refinement method,
the smallest edge weight incidence to the violating
vertex is kept for connectivity reason, we ensure
that in the code, the smallest edge incident to every
violated vertex is not penalized

We develop two wversions, which are the
modification of the Iterative Refinement method.
The medilications we make are in the penalizing
step and in the number of penalizing edges. In our
method, every viclated vertex s treated
sequentially in every iteration. For the first version
{(MP1) we keep the smaliest edge incident to every
violated vertex not to be penalized and in the other
version {MP2) we keep b, —1 smallest edges.

5 COMPUTATIONAL RESULTS.

We implemented our heuristics on a Silicon
graphics Indy Machine with 150 MHz speed and
64 Mbytes memory. The tolerance is set 10% of
the lower bound, and the maximum number of
iterations is approximately 20% of the number of
vertices. The time recorded is the time for finding
the solutions, and does not include the system
initialization.

We provide resulis on 2400 random problems

generated as folows:

= Mumber of vertices range from 10 1o 500.

s The edge weights are generated randomly from
uniform distribution from 1 to 1000,

e For each », 30 random problems are generated.

a For each n, graphs are generated with different
v density p. We use p =0.25, 0.5, 0.75 and 1.0.
Far a given p, the edge e, is chosen if the
random number ¢ chosen from the unit
distribution is less than p. The expected
number of edges in the graph is (:}p

Disconnected graphs are rejected.
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For Tterative Refinement and Modified Penalty
methods, we implement the algorithms using two
values of £, namely 0.5 and 1.
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Some of the resulis are presented graphically in
figures 1-8 below, we do not include all 2400
random prablems in the figures. In all cases we use
the degree bound of 3.
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6. CONCLUSIONS

This paper developed a new approach based on
Tabu search, to solve the DCMST problem. In
addition, we presented a modified penalty method.
Extensive computational results demonstrate that
our Tabu search heuristic indesd improves the
quality of the sclution achieved by the upper
bound. In the penalty approach, MP2 with k=0.5 is
the best, followed by. MPL £=0.5. The
performance of MP2, £=1 and IR, £=0.5 slightly
the same, but when » increases, MP2, k=1 tends to
perform better than IR, £=0.5
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