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Abstract: The location of emergency service facilities such as ambulance and fire stations are a major
concern &nd chalienge for modern city planners. In addition to the challenge of effectively meeting the
service demands, managers of service facilities need to deal with budget culs as well as the ever increasing
volume of data and information made avatlable by modern technology. The lecation problems, which arise in
emergency services, can be broadly classified into three categories namely strategic, tactical and operational.
Strategic problems involve the location of fixed facilities for example hospitals, emergency centers, eic.
Tactical problems relate to the location and relocation of emergency vehicles at any point in time,
Operational problems are concerned with procedures to be followed by staff (paramedical) when calls are
received. Our concern here is with the strategic and tactical categories. The optimization probiems that arise
are computationaily difficult and complex. This paper discusses a number of models for this difficult class of

problems. Dominance concepts are introduced for problem size reduction.
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iI. INTRODUCTION

The provision and utilization of effective and
sfficient emergency services is an important
optimization problem encountered in ali parts of
the world. Typically, the optimization problem is
to find the *best’ location of facilitics that meets
the desired requirements. The objective to be
optimized is usually a function that measures the
quality of service or the cost/output of the system.
The requirements usually relate to factors such as
demand, response time and capacity. In addition to
the location one also needs to determine the
allocation of “customers” to facilities.

The fundamental objectives of emergency facility
location can be summarized info two categories the
first refers to those designed to cover demand
within a specified response time {covering models)
and the second refers to those designed to
minimize the average weighted distance or
response time {p-median modeis).

The optimization models developed to solve such
problems often yield good ouicomes for the
location of emergency facilities of which some
examples are given below,

e In Montreal Canada, a heuristic method (tabu
search) was used o solve the ambulance

location problem. A graph model of the
network using double coverage criteria was
considered (7-minute and 14-minute response
time). Computational results showed that this
methoed was very efficient in improving
ambulance coverage in  modern  cities
{Gendreau et al, 1998].

e An optimization model was also developed
and applied 1o the allocation of emergency
vehicles in Louisville, Kentucky. As a result
the ambuiance response time decreased by
36% [Repede and Bernardo, 1994].

e An efficient model was developed to reassess
the ambulance deployment in Tucsen,
Arizona. The model was to evaluate potential
changes in paramedic services provided in the
cliy [Goldberg et al., 19901,

e In Bangkok, Thailand the ambulance iocation
was recreanized by applying a deterministic
and simulation model to the location problsm.
The results led to a reduction in the number of
ambufance in the city but maintaining the
level of service. This resulted in a cost
reduction in providing the service [Fujiwara et
al.,, 19871,

The objective of this paper is to discuss some
modeis for emergency facilities with a special



reference to the p-median problem. The paper is
organized as follows. In Section 2 we discuss the
covering models and the p-median models. Some
sofution methods of the p-median problem are
discussed in Section 3. In Section 4 we introduce
the concept of dominance for reducing the problem
size. Conclusions are presented in Section 5.

2. MODELS

Decision models for locating emergency facilities
have been arcund for sometime now. Most of the
early models assumed that emergency facilities
would always be available once they are
positioned Badri et al (1998).

We begin with the simplest covering models and
the p-median problem. We use the following
notation:-

I = {i,...,m},the set of demand locations,

I = {1 n}, candidates sites for facilities,
dU = the shortest distance between location / and

location J,

x,= | if the customer at location / is allocated to
facility at location j, 0 otherwise,

¥, =lifafacility is established at location /, 0
otherwise,

p =the number of facilities to be established,

x, =1 if a server is stationed at j, 0 otherwise,

y, =1 if node { is covered, 0 otherwise,

S = time or disiance standard for coverage,

N, =the set of nodes ; located within the standard

distance or time from demand node J,
a, = the population at the demand node §

2.1 Location Set Covering Problem (LSCP)

Mathematically the LSCP developed by Toregas et
al. [1971] can be formulated as

Minimize Z = x, (1)
jed

subject to

leai viel x;e{0l}, VjieJ {2

Ja iV,

The objective stated in (1) minimizes the number
of facilities. Constraint (2) ensures that the demand
at each node / is covered by at least one server
located within the time or distance standard S.

The need to provide sach demand point with a
facility within a specified standard time or distance

often results in solutions with farge number of
facilities, many of which cover fringe locations
having a small demand. One approach to sclve
this problem has led to the development of the
Maximal Covering Location Problem (MCLP} by
Church and ReVelle [1974].

2.2 Maximal Covering Location Problem
(MCLP)

The MCLP seeks to maximize the number of
demands covered within the time standard by a
fixed number of facilities. The wmathematical
formulation of a MCLP can be written as:

Maximize Z = ) a,y, (3
jef
subject to
y, € x,.Viel (4
&N,

Sx, =p (5)
jadf

X,y ef0l}, Vied iel

The ghiective (3) maximizes the sum of covered
demands. Constraint {4) indicates that demand §
can only be covered if at least one server 1s located
within the time or distance standard S. Constraint
{5) ensures that p facilities are located.

The above models assume the demand node
receives complete benefit if is within the coverage
distance. However, the benefit associated with a
demand node/facility pair changes graduvally with
the distance between the demand and nearest
facility. The p-median problem developed by
Hakimi [1964] addresses this issue by examining
the relationship between the distance between the
facility and the demand point.

2.3 The P-Median Problem

The p-median problem consists of determining the
tocation for p service centers so as to minimize the
overall costs to supply the customers given that
each customer is supplied by the service center
nearsst to it. The p-median problem arises
naturally in locating plants or warchouses to serve
other plants or warehouses. It can also be used to
locate emergency centers [Serra and Marinov,
1998, Mirchandani, 1980].

The mathematical formulation of a p-median
problem with a uniform weight (i.e. each node has
the same demand) can be specified as follows,

2150



Min Y > d.x, (6)
el jeJ C

subject to
>x, =1, Viel (7
e
2= (8)
f=J
X, Sy, Viel VjelJ {9
y,e{0l}, x, {01 (10}

The objective {£) is tc minimize the total distance

from customers or clients to their nearest facility.

Constraint (7) shows that the demand of each
customer or client must be met. From constraint
(8) the number of facilities to be located is p.
Constraint (9) shows that customers must be
supplied from an open facility, and constraint {10}
specifies the binary nature of the variables. If (6) is
replaced by

MmZZq%%,
P

then we have the p-median problem with varying
demands ( g, is the demand at node 7).

Several extensions have been proposed for the
covering and the p-median based models to
improve their efficiency [Daskin et al., 1988]. See
aiso ReVelle [1989] for a detail review of
extension to covering models. Extensions to the p-
median problem that account for its stochastic
nature has been given by Fitzsimmens [1973],
Weaver and Church [1985] and Swoveland et al.
[1973].

SOLUTION METHODS FOR THE £
MEDIAN PROBLEM

3

The p-median problem is a computationally
difficult problem to solve [the problem is NP-hard
on general networks]. Most solution methods are
heuristic begause of the large number of variables
and constraints that arise. The heuristics are based
on: genetic algorithms, simulated annealing, tabu
search, mode partitioning, node insertion, node
substitution and various hybrids {see Hosage and
Goodchild, [1986]; Golden and Skiscism, [1986];
Glover [1990}]. Some of these heuristics together
with Lagrangian relaxation, which is one of the
most  successful exact methods, are briefly
discussed below.
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3.1 Lagrangian Relaxation

Lagrangian relaxation is based on the principle that
removing constraint from a problem makes the
problem easier to solve. Generaily, Lagrangian
relaxation removes a constraint and solves the
revised problem but introduces a penalty for
violating the removed constraint. The solution
procedure for solving the problem is stated below.

The Lagrangian relaxation for the p-median is
given as

HA)=minZ T d x +2 44
i j vou i *
subject to constraints {8§}-(10).

Y

1——2:{‘;;} {1h
N

The expression r, = Zmin{(}, d,~A ;} {12)

is used to minimize the chjective function (11} for
the Tixed values of the Lagrange muitipliers. We

set

”:{%,g‘fyj:landd‘jwﬂy ; <0
i

0, otherwise

The lower and upper bounds of the objective
function are determined by using the variables of
modified and unmodified problems respectively.
The next step involves the use of subgradient
optimization to update the value of the Lagrange
multipliers [see Daskin, 1995}

4} (14)

i

m+l m .m R
}Li -max{(),i[ -1 (Z"g

i
m _m
,”’fx_fm%%m (15)
Tivx -1
Ty Y
where

A” = aconstani on the mth iteration,

the stepsize at the m™ iteration of the
Lagrangian procedure,

{/B = the best (smallest) upper bound on the P-
median ohijective function,

L —

‘f E=3

L™ = the vaiue of the objective function using the
solution obtained from the relaxed problem,

x,” = the optimal value of the allocation variable
at the m" iteration.

Axn optimal solution is found if the lower bound is
equal ar very close to the upper bound. Narula et
al. {1977] and Galvao {1980] and Beasley [1993]
have successfully applied the subgradient
optimization to sofve a number of probiems with



up to 900 nodes. However for the larger preblems
tested the computational time is excessively large.

3.2 Heuristics

We begin our discussion by observing that it is a
simple task to allocate a set of m customers to p
facilities /7 with fixed locations, We just determine

d

mirz{d.},lsiém,jal’ (16}
b; 1 y

and allocate customer 7 to facility _,r',.'. This

provides us with a simple tool for generating
feasible solution and for exploring altemate
solutions through exchange of facility locations.
Simple constructive heuristics can be easily
designed. We now describe three simple heuristics
which are competitive with other methods and
which are widely used today.

3.3 Teitz and Bart [1968] Heuristic

This is one of the first heuristics developed for the
p-median  problem, The heuristic starts by
generating a feasible solution and then attempts to
improve the current solution through a swapping
operation, which relocates a facility to an unused
site. The process continues untif no further
improvements in the objective function value are
possible. The solution thus obtained is a local
optimum.

3.4 Densham and Rushion Heuristics {1992}

Motivated by the observation that the Teitz-Bart
method spends considerable computational time
with non-improving swaps, Densham and Rushton
[1992] proposed the GRIA {Global-Regional
Interchange Approach) procedure. This method
uses two exchange procedures, a local exchange
and =z global exchange. The global exchange
seiects the best site to drop {amongst the p) and the
best site to add (amongst the n-p). The local
exchange identifies for each site / in the cument
solution a set of neighboring sites &, (which may

consist of the customers that are served by the site)
and selects the best site in N, to replace site /.

3.5 Myopic Algorithm for the P-Median

Problem

The myopic heuristic is a greedy type, which,
works in the following way. Firstly a facility is
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located in such a way as to minimize the total cost
for all customers. Facilities are then added one by
one until p is reached. For this heuristic the
location that gives the minimum cost s selected.
Ardalan [1988] heuristic also works using the
same procedure. The main problem with this
approach (s that once a facility is selected it stays
in all subsequent solution. Consequently, the final
solution attained may be far from optimal.

The above three heuristics are the simplest to
understand and implement. The available
computational evidence, though limited, supports
the use of Teitz-Bart and the Densham-Rushton
heuristics. Certainly they outperform the Genetic
and Simulated Annealing algorithms.  In
applications, The Teitz-Bart and the [Densham.
Rushton heuristic are restarted a number of times
in order to obtain a good solution. Usually, both
heuristics start with a random initial solution, The
stopping rule that is used is to restart the procedure
until  the best-generated soiution has been
identified a specified number r of times. In some
numerical experiments with r = 10 the number of
restarts has ranged from 16 to 2515 [see Church
and Sorensen; 19941,

Recently some researchers [Salhi; 2002, Rolland et
al. 1996; Voss;, 1996} have focused on the
application of the Tabu Search methed to the p-
median  problem. Preliminary results are
encouraging, but more work needs to be done to
establish the superiority of this approach. This
method utilizes a swap move and & pumber of
criteria (tabu  tenure,  aspiration  level,
intensification strategy etc.) to guide the search.

DOMIMNANCE CRITERIA FOR THE £-
MEDIAN PROBLEM

4.

The previous section briefly explained some of the
aigorithms that have been proposed for the p-
median probiem. There has not been any serious
comparative analysis of the various algorithms.
Indeed, computational work has been somewhat
limited. Practical problems with several thousand
nodes are not uncommon, Exact methods for such
appiications are computationally expensive or
infeasible. Heuaristic algorithms (eg. Teiiz-Bart and
Densham-Rushton) may require many resfans to
generate a good solution or, as in the cass of the
Myopic algorithm give a solution far from optimal,
One possible way of achieving some improvement
is by reducing the size of the problem. Cur aim
here is to introduce some ideas in this direction.
We illustrate our ideas with a simple example and
do not indulge in computational work as this is
outside the scope of this paper.



Problem size reduction is a widely used strategy in
addressing large and computationally difficult
optimization problems. We now introduce some
reduction methods for the p-median probiem using
the concept of dominance.

Consider a weighted p-median problem given as
D={d, ). Note that each row (column) of D

identifies a demand (facility) location. We say
column k dominates column 1 if dzj < a’ﬂ for all

i# j. We use the term strongly dominates in the
case of strict inequality. Observe that locating a

A s

facility at a dominated location / would provide no

advantage to locating a facility at & except possibly
in serving the demands of customers in location /.
Further, strongly dominated columns would only
be use for “self-serve”. Consequently dominated
columns can be dropped to generate a feasible
solution and later be considered for “self-service”.

We extend slightly the concept of dominance as
follows. We say columns & aad [ dominate
column j if dzj me{dik,d&,} for all i=j. In

this case there is no advantage in using location
(except for serving customers in location j) when
locations k and / are used. So again we can drop
the dominated column j if sites & and [ are used.
The term strongly is used as before. We illustrate
this concept with the foliowing example.

Example 1: Consider the p-median problem with
the weighted distance matrix D gives as:

0 10 66 29 91
10 0 68 58 43
66 68 0 100 92
29 58 106G G 84

a1 45 92 84 g

Observe that column 1 strongly dominates
columns 3 and 3 and column 2 strongly dominates
column 4. So we can consider the reduced matrix
D' consisting of columns | and 2.

We would never locate a facility at locations 3, 4
or 5 except for “self-serve”. If p = 2 the optimal
solution for 27 is to locate facilities at location |
and 2. Facility I would serve customers in
locations 1, 3 and 4 whilst facility 2 serves
customers in locations 2 and 5. Using this as an
initial solution we consider the original problem
with matrix 0. Now the cwrent solution has
objective function value of 140. If we utilize any
of facility locations 3, 4 or 5 then we need the
optimal solution of the l-median probiem for

matrix D7 This solution, which, places a facility at
location 1, has objective function value of 196,

The values of the candidate solutions, which use
location | and a “self-serve” facility, are:

Table 1: Candidate Solutions
Seif-Serve Facility
Obiective Funetion Value

3 4 3
130 1 167 ; 105

Thus the optimal 2-median solution is a facility at
location | to serve locations 1. 2, 3 and 4 and self-
serve facility at location 5.

For p>2 we can, since columns 3 and 4 are
strongly dominated and columns 1 and 3 strongly
dominate column 2, allocate the (p-2) most
expensive customers in the above (p = 2) optimal
solution to {2} self-serve facilities at locations 2,
3 or 4. Again this provides the optimal solution in
this example.

The above example can also be used to illustrate
the problem with the Myopic heuristic. With p = 1
the heuristic would locate the single facility at site
2. With one facility fixed at site 2, it would then
choose site 3 for the location of the second facility.
Continuing in this way we obtain the solution for
all values of p. These along with the solution
generated using dominance are given in the
following table.

Table 2: Hustration of Dominance

£ Solution
Dominance Myopic
Facilities | Objective | Facilities | Objective
2 141,35} 105 {2,3} 113
3 {135} 39 {1,2.3} 74
4 1413451 |10 {1,235} |29

The Myopic can vield a poor soiution because
earlier chosen sites cannot be changed. Of course,
both the Teitz-Bart and the Densham-Rushton
heuristics overcome this problem through swaps.

The dominance congcept we have introduced above
can be used with any computational procedure and
can assist by reducing the problem and identifying
certain sites as potential self-serve sites. Further,
given a set of siies, dominance can be used to
identify candidates for inclusion in considering
SWaps.

5. CONCLUSIONMS

This paper discusses the computational methods
that can be used for determining the optimal
location of facilities in a given network. Available
methods are of limited use in practical sized
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problems involving a large number of demand/site
locations. This paper introduces a reduction
method based on dominance for the p-median
problem. The method can be used with any
algorithm. [t can identify potential sites for “self
serve” and identify candidates for swapping
moves,
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