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Abstract Extreme observations in commodity returns time series data occur as the result of shocks to a
market through macroeconomic news, or market-specific events including fundamental and speculative
pressures. However, outliers can have a dominating and deleterious effect in empirical models. This paper
examines the forecasting of returns volatility in the presence of extreme observations using an AR(1)-
GARCH(1,1) model for a non-ferrous metal futures contract. A simple method of accommodating extreme
observations is applied that involves squeezing outliers to various thresholds. The forecasts obtained using
this method are compared with a simple model in which all observations from the sample are used, and no
adjustment for atypical observations is made. Estimates from the rolling one-step ahead models are presented
graphically, and a number of forecast evaluation criteria are used to compare the forecasts generated under

different outlier regimes.
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1. VOLATILITY, OUTLIERS AND
METALS

Volatility in commodity markets represents risk to
producers and consumers of commodities. Risk in
storable commodity markets is manifest as
uncertainty for producers in terms of revenues, for
consumers in terms of costs, and for stock holders
in terms of margins. Derivatives, such as futures
and options, are routinely used to hedge against
price risk in commodity markets. Strategies for
hedging, and pricing of options and other
derivatives, require knowledge of the volatility of
the underlying time series. -

As volatility is unobservable, it must be estimated.
The modelling and forecasting of volatility has
received much attention in the literature since the
development of the Autoregressive Conditional
Heteroskedasticity (ARCH) model by Engle
[1982], as well as Bollerslev's [1986] inclusion of a
lagged dependent variable to form the Generalised
ARCH (GARCH) model. A multitude of GARCH-
type models has since been developed to
incorporate various stylised facts of volatility, and
the time series properties of financial returns.
Empirical research has followed the development
of these theoretical models, but GARCH(1,1)
remains the most widely used time-varying
volatility model in practice.

Although GARCH is adequate in forecasting
standard volatility, it is apparent that the model

does not predict outlying observations particularly
well. Furthermore, in the presence of extreme
observations, the model performs poorly in terms
of parameter estimation and forecasts. Under these
circumstances, forecasts of volatility will be
affected by outliers, and could possibly be
improved by adjusting the outlying and extreme
observations. It may be argued, however, that
extreme observations contain useful information
about possibly important, and frequently non-
repetitive, events. Such aberrant observations can
be associated with asymmetric returns, spikes and
clusters in volatility, and hence should not be
deleted from the sample altogether.

As for many commodity and financial returns
series, returns on industrially-used non-ferrous
metals futures contracts contain extreme
observations. Metals prices embody a business
cycle component. It is to be expected, therefore,
that macroeconomic news will effect daily returns
on metals futures contracts and trading on the spot
market, as do market-specific events including
fundamental and speculative pressures. Hedge fund
activities are a common source of large price
fluctuations for commodity spot and futures prices,
particularly for aluminium.

This paper examines the forecasting of volatility in
returns in the presence of extreme observations
using an AR(1)-GARCH(1,1) model for a non-
ferrous metal (specifically, aluminium) futures
contract traded on the London Metal Exchange
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(LME). A method of accommodating extreme
observations is used, namely simply squeezing the
extreme returns observations lying beyond some
threshold back to the threshold. Chen and Liu
[1993] suggested an iterative weighting algorithm
for adjusting extreme observations for ARMA
models, which was applied to GARCH models in
Franses and Ghijsels [1999]. The advantage of the
method used in this paper over that originally
suggested by Chen and Liu [1993] is its
straightforward and mathematically simple nature.
The forecasts obtained using the squeezing method
are compared with a model in which all
observations from the sample are used, and no
adjustment for atypical observations is made.
Estimates from rolling one-step-ahead forecasting
models are presented graphically, and a number of
forecast evaluation criteria are used to compare the
forecasts generated under different outlier regimes.
Improved forecasting of volatility in metals
markets will allow superior risk management by
producers and consumers of industrial metals,
improved hedging strategies and options pricing,
and the provision of enhanced information for
speculators and investment funds.

2. ACCOMMODATING EXTREME
OBSERVATIONS

The GARCH model of Bollerslev [1986] is used in
this paper, specifically the AR(1)-GARCH(1,1)
model. The conditional mean of futures price
returns in this model is giver by:

n=u+or_ +g, lp|<1 (L
and the conditional variance of &, is:
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where r, denotes returns on futures price from
period t-1 to t; €, is the unconditional shock; 1, is a
sequence of normally, independently and
identically distributed random variables with zero
mean and unit variance; and h, is the conditional
variance of returns. For the GARCH process to
exist, the conditional variance must be positive, so
that w >0, 0. >0, and § > 0.

Several statistical properties have been established
for the GARCH(p,q) process in order to define the
moments of the unconditional shock. Ling and
McAleer [2001] derived a necessary and sufficient
condition for the existence of the moments of a
family of GARCH processes described in He and
Terisvirta [1999], which includes the GARCH(1,1)
model. Moment conditions for the GARCH(1,1)
process can easily be checked.

The necessary and sufficient condition for the
second moment to exist for the GARCH(1,1)
model, guaranteeing the GARCH(1,1) process is
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strictly stationary and ergodic, is given by:

a+f<l1. 4
The fourth moment of the unconditional shock will
exist if and only if the following condition is
satisfied (assuming normality):

302 +208+ B2 <1. 5)
In section 4, the existence of second and fourth
moment conditions is examined under various
outlier regimes.

GARCH modelling in the presence of outlying
observations has been examined in a number of
recent papers, importantly, Hotta and Tsay [1998],
Franses and Ghijsels [1999], Franses and van Dijk
[1999], Yew et al. [2001], and Verhoeven and
McAleer [2000]. An outlier is typically defined as
an observation from a different population to that
of the sample, while an extreme observation is an
atypical observation originating from the same
population as the rest of the sample. In an empirical
sense, the distinction between an outlier and an
extreme observation is to some extent arbitrary.
Several types of outliers may occur in financial
time series, including additive outliers, innovation
outliers, level shifts and variance changes. In the
case of an additive outlier, only one observation is
affected. Several observations are affected where
there is an innovation outlier. The specific
definition of an outlying observation depends on
the model of outliers used. ’

Outliers can have a dominating and deleterious
effect on the (quasi-) maximum likelihood
estimates of GARCH parameters, leading to model
misspecification, poor forecasts and invalid
inferences. Biases may be induced upwards for the
estimate of the ARCH parameter and downwards -
for the estimate of the GARCH parameter. The
tendency of GARCH to over-predict the persistence
of moderate to high observations is increased when
outliers are present in the estimation window.
Adverse effects on the size and power of the LM
test used to detect ARCH effects are likely, leading
to an increased likelihood of model
misspecification. A small number of isolated and/or
clustered outliers may result in spurious ARCH
effects when none is present. Rolling forecasts may
suffer temporary detrimental effects due to carry-
over effects of outliers in previous estimation
windows, and to permanent effects of model
misspecification and parameter estimates that are
biased for the entire sample. Temporary effects are
particularly noticeable when extreme observations
enter and leave the estimation window.

This paper uses a computationally straightforward
method to accommodate extreme observations
proposed in Yew et al. [2000], continuing a theme
developed by Franses and Ghijsels [1999]. Daily
returns observations lying beyond a threshold are



deemed to be extreme, and are squeezed back to the
threshold itself prior to estimating the model. The
threshold is defined as a multiple of the sample
standard- deviation on either side of the sample
mean. In this application, several alternative
multiples of the standard deviation are used as
thresholds to transform the data. For comparison
purposes, estimates and forecasts are also generated
from a model for which the data are not
transformed. The outlier regimes and associated
thresholds are:

Regime A: No transformation;

Regime B: 4 standard deviation threshold;
Regime C: 3 standard deviation threshold;
Regime D: 2.5 standard deviation threshold.

As a rolling AR(1)-GARCH(1,1) model is used in
all cases, the sample mean and sample standard
deviation are calculated for each rolling window.
Each sample window is transformed individually,
prior to estimating the model and generating
forecasts from that window.

3. NON-FERROUS METALS DATA

The LME is the major international market for the
main industrially-used non-ferrous metals, namely
aluminium, aluminium alloy, copper, lead, nickel,
tin, and zinc'. The Exchange began trading
aluminium futures in 1978, but the market was
initially thin. At that stage, the aluminium market
was dominated by a small number of large
producers. Internationally, price was set on a
producer list basis. These list prices changed
infrequently, but transactions prices were often
substantially discounted relative to the list price.
Over the 1980’s, the LME contract gained an
increasing volume of trade as the industry moved to
pricing on the basis of market quotations. Such
quotations from the LME are now used by the
aluminium industry worldwide as the basis for
pricing. Industry participates in the futures market
on the LME extensively for hedging. Commodity
and hedge funds are active in the aluminium futures
market, and have been blamed for periods of high
volatility due to speculative activities. The
aluminium market is now the largest metals market
by value and contract turnover on the LME.

Daily data for 3-month contract settlement prices
are obtained for aluminium that cover the period 1
October 1982 to 31 May 2000, providing a total of
4458 observations. Prices quoted by the LME prior
to July 1993 are denominated in British Pounds.
The 3-month futures prices are converted from
British Pounds to US Dollars using the 3-month US
Dollar to British Pound exchange rate. After July

! Rutures contracts for the precious metal silver have also been
traded on the LME since late 1999.
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1993, prices are quoted by the exchange in US
Dollars. The returns series are calculated as:

N1 = (fl - ft—l)/fr—l . ©®
A plot of the price and returns series is presented in
Figure 1. Several extreme observations are
apparent, the largest of which is an extreme
negative observation on 19 October 1987, followed
by a positive correction on the following day. The
correction is followed by another large negative
observation on 29 October and a positive correction
on 30 October, with yet another large negative
observation on 2 November. A substantial cluster
of volatility extending for approximately two years
follows the largest negative outlier. Within this
cluster, there are several large negative and positive
outliers. Several clusters of volatility are apparent
at other points in the data set, and there are
numerous extreme observations, the majority of
which are negative. The late 1990’s is notable in
that any extreme observations are small relative to
those which occurred in the 1980’s and early
1990’s. The price series show a number of apparent
structural breaks. Descriptive statistics for the
returns show the series are leptokurtic, but not
skewed.

4. APPLICATION TO VOLATILITY

FORECASTING

Inspection of the data and testing for stylised facts
are important first steps to determine which model
best describes the conditional variance of
aluminium returns. The AR(1)-GARCH(1,1) model
is appropriate for symmetric and leptokurtic
returns, and adequately represents the data in terms
of rolling diagnostic tests for normality, serial
correlation, and the existence of ARCH effects.
Estimates of the conditional variance were not
sensitive to the choice of model for the mean
equation. Furthermore, choice of the GARCH(1,1)
model allows an evaluation of outlier adjustment
regimes for the most commonly used volatility
model in empirical research.

The AR(1)-GARCH(1,1) model is estimated for
each returns series using a rolling window of 500
observations, which rolls 3958 times over a sample
of 4458 observations. The procedure is
programmed using EViews, and generates
coefficient estimates, standard errors, t-ratios,
moment conditions and one-step ahead out-of-
sample forecasts. Estimates from the rolling
samples are treated as “data” in the descriptive
discussion below, where each model is estimated
by maximum likelihood. The forecast volatility is
compared with the ‘true’ volatility calculated over
the same window, where the ‘true’ volatility is

defined as:

v, =(r,-7)? )

where v, refers to the ‘true’ volatility at time t, and



¥ is the mean of returns over the window for the
sample used. The 1-day ahead forecast error, u,,, is
defined as:

Up1 = Ve — By 3
Forecasts of volatility generated by the models are
compared using the following criteria, namely,
mean error (ME), mean absolute error (MAE), root
mean squared error (RMSE), smoothed mean
absolute percentage error (SMAPE), smoothed
weighted median absolute percentage error
(SMedWAPE), and smoothed weighted mean
absolute percentage error (SWMAPE).

4.1 Parameter Estimates and Moment
Conditions

Plots of the rolling o (or ARCH) coefficient
estimates are provided in Figures 2 (regime A), 3
(regime B), 4 (regime C) and 5 (regime D), and
rolling B (or GARCH) estimates are shown in
Figures 6 (regime A), 7 (regime B), 8 (regime C),
and 9 (regime D). All parameter estimates are
positive, as required for the GARCH(1,1) model.
As expected, most ARCH parameter estimates are
small at around 0.1, while most GARCH parameter
estimates are large at around 0.9. However, there
are numerous instances where outlying
observations have a clear and detrimental influence
on the parameter estimates. It is apparent in the
plots of coefficient estimates derived from regime
A that outliers have an upward impact on the
ARCH estimates and a downward impact on the
GARCH estimates. Over the entire sample, the
estimates show substantial variability when no
adjustment for outliers is undertaken. In general, as
the threshold is increased, from regime B to C to D,
the ARCH and GARCH parameter estimates
become less variable.

Estimate number 811 is generated when the
October 1987 outliers, discussed in section 3, have
only recently entered the estimation window.
Figures 2 and 6 show that these outliers have a
substantial effect on the ARCH and GARCH
parameter estimates, respectively, under the no
outlier adjustment regime (regime A). The ARCH
plots show an upwards spike, while the GARCH
plots show a downward spike. The absolute
magnitude of the movement in each estimate from
their previous levels is similar, so that the second
moment is hardly affected. Squeezing the October
1987 outliers to 4 standard deviations from the
mean (regime B in Figures 3 and 7) reduces the
spike in both the ARCH and GARCH plots to a
level where it is almost unnoticeable. Further
squeezing of the outliers has little effect, as can be
seen from the plots for regimes C (Figures 4 and 8)

% For reasons of space, plots of t-ratios for the ARCH and
GARCH estimates, and second and fourth moments, are not
presented.

and D (Figures 5 and 9).

The same holds for nearby spikes apparent in the
ARCH and GARCH plots. For example, estimate
921 is substantially different from its neighbouring
ARCH and GARCH estimates. The October 1987
outliers remain within the estimation window at
estimate 1274, where there is a small spike in both
coefficient estimates. In both cases, regime B
shows a substantial decrease in the difference
between the affected estimate and its neighbours.
Regimes C and D make little difference beyond
that shown in the plots for regime B.

Between estimates 1784 and 2295, the ARCH
estimate shifts upward dramatically from around
0.1, which is typical for ARCH, to 0.5, which is
highly unusual. Over the same period, the GARCH
estimates fall to a minimum of under 0.1. This
episode coincides with 17 October 1991, when the
largest positive outlier enters the estimation
window. Interestingly, this returns observation is
not followed by a negative correction. Some 65
trading days later, there is a second large positive
return, which is also not followed by a correction.
When the October 1991 outlier leaves the window,
the ARCH estimates return to reasonable levels, as
do the GARCH estimates. As the threshold for
adjusting the data is tightened, regimes B, C and D
show that this outlier has a successively lower
impact on the ARCH and GARCH estimates.
Squeezing the returns data to a threshold of 2.5
standard deviations (regime D) has the greatest
impact on decreasing the ARCH estimates and on
increasing the GARCH estimates. However, while
the largest positive outlier remains within the
estimation window, the ARCH estimates are still -
far higher than is normally expected, and the
GARCH estimates are far lower.

In the late 1990’s (with observation 3346
representing 2 January 1996), where there are few
extreme observations in the returns series, the
GARCH estimates become extremely variable, and
plots of the t-ratios show the estimates are not
significant. For much of this period, the ARCH
estimates are relatively stable, but they are not
significant. There is little difference between the
four outlier adjustment regimes over these
estimates in terms of parameter stability.

Applying the outlier adjustment regimes to the
returns data also reduces the variability observed in
the t-ratios associated with the rolling ARCH and
GARCH estimates. Spikes in the series of t-ratios,
apparently induced by outlying observations, are
reduced in magnitude. The t-ratios become more
stable over the rolling windows, but in almost all
cases this does not change the significance of the
estimates at the 5% level.
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Table 1. Forecast Evaluation.

Evaluation Criteria 2.5 SD 3 SD 4 SD No Adjustment
ME 0.002465 0.002780 0.003155 0.003528
MAE 0.006815 0.006938 0.007117 0.007309
MedAE 0.005884 0.006032 0.006189 0.006299
RMSE 0.009134 0.009239 0.009411 0.009666
RMSE(-) 0.011973 0.011862 0.011896 0.011661
RMSE(+) 0.007720 0.008015 0.008366 0.008886
RMedSE 0.005884 0.006032 0.006189 0.006299
SMAPE 74.01 74.57 75.35 75.98
SMedAPE 62.54 63.29 64.07 64.93
SMWAPE 52.94 ) 52.39 52.06 51.82
SMedWAPE 30.78 31.09 31.81 32.24
% Forecasts Under 28.45 27.61 25.97 25.37
% Forecasts Over 71.55 72.39 74.03 74.63
% 2MC Satisfied 96.13 95.28 93.66 92.47
% 4MC Satisfied 92.57 92.04 91.51 89.84
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The percentages of estimation windows for which
the second and fourth moment conditions are
satisfied under various outlier regimes are shown
in Table 1. Accommodation of outlying
observations improves slightly the percentage of
windows that satisfy each regularity condition. For
the second moment, the proportion of windows
satisfying the condition increases from around
92.5% under regime A to over 96% under regime
D. For the fourth moment, the improvement is
slightly smaller, from just under 90% for regime A
to over 92.5% for regime D. The tighter is the
threshold, the higher is the number of windows
satisfying the conditions.

4.2  Forecasting Performance

Table 1 shows the forecasting performance
according to several forecast evaluation criteria for
the AR(1)-GARCH(1,1) model under each outlier
adjustment regime. ME, MAE, MedAE and RMSE
all provide some evidence to support an
improvement in the forecast performance of the
GARCH(1,1) model when outlying observations
are squeezed to their respective thresholds.
Importantly, the forecast performance improves as
the thresholds are narrowed, so that regime D
performs the best, followed by regimes C, B, and
A. The model using the raw data with no
adjustment for outliers (regime A) performed the
worst in terms of forecasts.

RMSE was also applied to only positive forecast
errors, denoted RMSE(+), and to only negative
forecast errors for RMSE(-). While adjusting
extreme observations improved the GARCH(1,1)
model with respect to over-forecasting, the model
generated larger under-forecasting errors. With no
outlier adjustment, the forecasting model over-
predicts volatility almost 75% of the time, and
under-predicts around 25%. Over the 3958
estimation windows, the outlier adjustment
regimes decrease the number of over-forecasts and
increase the number of under-forecasts. The tighter
is the threshold, the lower is the likelihood of the
GARCH(1,1) model to over-forecast.

Several smoothed forecast evaluation measures,
where the forecast error is normalised on the mean
of the forecast and actual volatilities, were also
calculated. SMAPE and SMedAPE indicated a
modest improvement in forecast performance by
accommodating extreme observations, and this
improved with the tightness of the threshold.
Weighting smoothed measures by the size of the
actual volatility relative to its mean produced
conflicting results. While-:SMedWAPE showed an
improvement due to accommodating outliers,
SMWAPE indicated that forecasting performance
deteriorated upon using the outlier adjustment

regimes. For periods of high volatility, squeezing
outlying observations under regimes B, C or D is
detrimental to the forecasting performance of the
GARCH(1,1) model.
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